poj2195(二分图最大匹配,最小费用流)

原创 2016年05月30日 17:55:06

Going Home
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 21120   Accepted: 10668

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man. 

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28

题意:m表示人,H表示房子,一个人只能进一个房子,一个房子也只能进去一个人,房子数等于人数,现在要让所有人进入房子,求所有人都进房子最短的路径。

思路1:在哈工大出版的图论及应用上有这个原题,是出在二分图的区域,那本书上的模板有bug,我的博客有改过之后的正确模板:

KM算法模板

这题就是个匹配的问题,有多少人回家,让回家的路总和最短,这就让匹配有了权值,所以得用KM算法,不过KM算法是最优匹配,匹配得出来的是最大值,然而我们要求出来最小值,所以我们用一个最大值减去每条边的值,使大小顺序倒过来,然后跑完KM算法之后用最大值*n-匹配值就是得出的结果了。

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
using namespace std;
typedef long long ll;

const int inf=1e9,maxn=110;
int tu[maxn][maxn],match1[maxn],match2[maxn];
int KM(int m,int n)
{
    int s[maxn],t[maxn],l1[maxn],l2[maxn],p,q,ret=0,i,j,k;
    ///l1为左边的匹配分量,l2是右边的匹配分量
    for(i=0; i<m; i++)
    {
        for(l1[i]=-inf,j=0; j<n; j++)
            l1[i]=tu[i][j]>l1[i]?tu[i][j]:l1[i];
        if(l1[i]==-inf)
            return -1;
    }
    for(i=0; i<n; l2[i++]=0);
    memset(match1,-1,sizeof(int)*n);
    memset(match2,-1,sizeof(int)*n);
    for(i=0; i<m; i++)
    {
        memset(t,-1,sizeof(int)*n);
        for(s[p=q=0]=i; p<=q&&match1[i]<0; p++)
        {
            for(k=s[p],j=0; j<n&&match1[i]<0; j++)
                if(l1[k]+l2[j]==tu[k][j]&&t[j]<0)
                {
                    s[++q]=match2[j],t[j]=k;
                    if(s[q]<0)
                        for(p=j; p>=0; j=p)
                            match2[j]=k=t[j],p=match1[k],match1[k]=j;
                }
        }
        if(match1[i]<0)
        {
            for(i--,p=inf,k=0; k<=q; k++)
                for(j=0; j<n; j++)
                    if(t[j]<0&&l1[s[k]]+l2[j]-tu[s[k]][j]<p)
                        p=l1[s[k]]+l2[j]-tu[s[k]][j];
            for(j=0; j<n; l2[j]+=t[j]<0?0:p,j++);
            for(k=0; k<=q; l1[s[k++]]-=p);
        }
    }
    for(i=0; i<m; i++)
        ret+=tu[i][match1[i]];
    return ret;
}

char x[110][110];
struct hh
{
    int x,y;
    hh(int xx,int yy)
    {
        x=xx,y=yy;
    }
};
vector<hh>hou;
vector<hh>man;

int real(int x)
{
    if(x<0)
        return -x;
    return x;
}

int main()
{
    int m,n;
    while(~scanf("%d%d",&n,&m)&&m+n)
    {
        hou.clear();
        man.clear();
        for(int i=0; i<n; i++)
            for(int j=0; j<m; j++)
            {
                scanf(" %c",&x[i][j]);
                if(x[i][j]=='H')
                {
                    hh t(i,j);
                    hou.push_back(t);
                }
                else if(x[i][j]=='m')
                {
                    hh t(i,j);
                    man.push_back(t);
                }
            }
        int l=hou.size();
        for(int i=0; i<l; i++)
            for(int j=0; j<l; j++)
                tu[i][j]=100000-(real(hou[i].x-man[j].x)+real(hou[i].y-man[j].y));
        printf("%d\n",100000*l-KM(l,l));
    }
    return 0;
}

思路2:这题由于是要求总的最短路径,那么我们可以想到用最小费用流来解决这个问题。

我的博客有最小费用流的模板:最小费用流模板


#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
using namespace std;
typedef long long ll;
const   int oo=1e9;
const   int mm=11111111;
const   int mn=888888;
int node,src,dest,edge;
int ver[mm],flow[mm],cost[mm],nex[mm];
int head[mn],dis[mn],p[mn],q[mn],vis[mn];
/**这些变量基本与最大流相同,增加了cost 表示边的费用,p记录可行流上节点对应的反向边*/
void prepare(int _node,int _src,int _dest)
{
    node=_node,src=_src,dest=_dest;
    for(int i=0; i<node; i++)head[i]=-1,vis[i]=0;
    edge=0;
}
void addedge(int u,int v,int f,int c)
{
    ver[edge]=v,flow[edge]=f,cost[edge]=c,nex[edge]=head[u],head[u]=edge++;
    ver[edge]=u,flow[edge]=0,cost[edge]=-c,nex[edge]=head[v],head[v]=edge++;
}
bool spfa()/**spfa 求最短路,并用 p 记录最短路上的边*/
{
    int i,u,v,l,r=0,tmp;
    for(i=0; i<node; ++i)dis[i]=oo;
    dis[q[r++]=src]=0;
    p[src]=p[dest]=-1;
    for(l=0; l!=r; (++l>=mn)?l=0:l)
        for(i=head[u=q[l]],vis[u]=0; i>=0; i=nex[i])
            if(flow[i]&&dis[v=ver[i]]>(tmp=dis[u]+cost[i]))
            {
                dis[v]=tmp;
                p[v]=i^1;
                if(vis[v]) continue;
                vis[q[r++]=v]=1;
                if(r>=mn)r=0;
            }
    return p[dest]>-1;
}
int SpfaFlow()/**源点到汇点的一条最短路即可行流,不断的找这样的可行流*/
{
    int i,ret=0,delta;
    while(spfa())
    {
        for(i=p[dest],delta=oo; i>=0; i=p[ver[i]])
            if(flow[i^1]<delta)delta=flow[i^1];
        for(i=p[dest]; i>=0; i=p[ver[i]])
            flow[i]+=delta,flow[i^1]-=delta;
        ret+=delta*dis[dest];
    }
    return ret;
}

struct hh
{
    int x,y;
    hh(int xx,int yy)
    {
        x=xx,y=yy;
    }
};
vector<hh>hou;
vector<hh>man;

int real(int x)
{
    if(x<0)
        return -x;
    return x;
}
char x[110][110];
int main()
{
    int m,n;
    while(~scanf("%d%d",&n,&m)&&n+m)
    {
        hou.clear();
        man.clear();
        for(int i=0; i<n; i++)
            for(int j=0; j<m; j++)
            {
                scanf(" %c",&x[i][j]);
                if(x[i][j]=='H')
                {
                    hh t(i,j);
                    hou.push_back(t);
                }
                else if(x[i][j]=='m')
                {
                    hh t(i,j);
                    man.push_back(t);
                }
            }
        int l=hou.size();
        prepare(2*l+2,2*l,2*l+1);
        for(int i=0; i<l; i++)
            for(int j=0; j<l; j++)
                addedge(i,j+l,1,real(hou[i].x-man[j].x)+real(hou[i].y-man[j].y));
        for(int i=0; i<l; i++)
            addedge(2*l,i,1,0),addedge(i+l,2*l+1,1,0);
        printf("%d\n",SpfaFlow());
    }
    return 0;
}


版权声明:本文为博主原创文章,若转载请注明转载地址http://blog.csdn.net/martinue。

POJ2195-Going Home

转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6732762   大致题意: 给定一个N*M的地图,地图上有若干个...

POJ 2195(费用流)

POJ 2195题目大意给你一个N∗M​N*M​的地图,上面有房子”H”,人“m”,空地“.”。房子和人数相同,将人移动一格花费为1,问将将地图变为一个房子上恰好一人的最小花费。(在移动的过程中可以出...
  • mmy1996
  • mmy1996
  • 2017年02月21日 17:04
  • 475

poj2195 - Going Home

想看更多的解题报告:http://blog.csdn.net/wangjian8006/article/details/7870410                                ...

【POJ 2195】 Going Home(KM算法求最小权匹配)

【POJ 2195】 Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65...

POJ2195 Going Home (最小费最大流||二分图最大权匹配)

Going Home Description On a grid map there are n little men and n houses. In each unit time, every ...

二分图大讲堂——彻底搞定最大匹配数(最小覆盖数)、最大独立数、最小路径覆盖、带权最优匹配

匹配 文本内容框架: §1图论点、边集和二分图的相关概念和性质 §2二分图最大匹配求解 匈牙利算法、Hopcroft-Karp算法 §3二分图最小覆盖集和最大独立集的构造...

二分图最大匹配与最小路径覆盖(一些题目)

一些题目模型转化,文章转自:http://blog.sina.com.cn/s/blog_89a06c7d0100trcg.html 在讲述这两个算法之前,首先有几个概念需要明白: 二分图: 二...

POJ2195 Going Home 【最小费用流】+【二分图最佳匹配】

Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18169   Accepted: 9268...

POJ-2195 Going Home (最小费用最大流初学 && 最大权二分匹配—KM算法)

Going Home 最小费用最大流 && 最大权二分匹配,两种解法 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:...

POJ 2195 Going Home [二分图带权匹配] [费用流]

Going Home Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %lld & %lluDescript...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj2195(二分图最大匹配,最小费用流)
举报原因:
原因补充:

(最多只允许输入30个字)