关闭

二分图匈牙利算法模板

标签: acm大二
1023人阅读 评论(0) 收藏 举报
分类:

想看更多模板,请点击:http://blog.csdn.net/martinue/article/category/6268283

最大匹配数:最大匹配的匹配边的数目

最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择

最大独立数:选取最多的点,使任意所选两点均不相连

最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)

定理2:最大匹配数 = 最大独立数

定理3:最小路径覆盖数 = 顶点数 - 最大匹配数


const int N=555;///两边的最大数量
bool tu[N][N];
int from[N];///记录右边的点如果配对好了它来自哪里
bool use[N];///记录右边的点是否已经完成了配对
int n,m;///m,n分别表示两边的各自数量,n是左边,m是右边
bool dfs(int x)
{
    for(int i=1;i<=m;i++)///m是右边,所以这里上界是m
    if(!use[i]&&tu[x][i])
    {
        use[i]=1;
        if(from[i]==-1||dfs(from[i]))
        {
            from[i]=x;
            return 1;
        }
    }
    return 0;
}
int hungary()
{
    int tot=0;
    memset(from,-1,sizeof(from));
    for(int i=1;i<=n;i++)///n是左边,所以这里上界是n
    {
        memset(use,0,sizeof(use));
        if(dfs(i))
            tot++;
    }
    return tot;
}

也可以改写成vector版本的,方法比较灵活。



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人说明


    即便如此,


    我们也在自己


    选择的道路上


    稳步前行!


    个人资料
    • 访问:98770次
    • 积分:4198
    • 等级:
    • 排名:第7283名
    • 原创:334篇
    • 转载:7篇
    • 译文:0篇
    • 评论:2条
    最爱JAY
    博客专栏