hdu1151(二分图最大独立集)

原创 2016年05月31日 20:18:10

Air Raid

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4575    Accepted Submission(s): 3062


Problem Description
Consider a town where all the streets are one-way and each street leads from one intersection to another. It is also known that starting from an intersection and walking through town's streets you can never reach the same intersection i.e. the town's streets form no cycles.

With these assumptions your task is to write a program that finds the minimum number of paratroopers that can descend on the town and visit all the intersections of this town in such a way that more than one paratrooper visits no intersection. Each paratrooper lands at an intersection and can visit other intersections following the town streets. There are no restrictions about the starting intersection for each paratrooper.
 

Input
Your program should read sets of data. The first line of the input file contains the number of the data sets. Each data set specifies the structure of a town and has the format:

no_of_intersections
no_of_streets
S1 E1
S2 E2
......
Sno_of_streets Eno_of_streets

The first line of each data set contains a positive integer no_of_intersections (greater than 0 and less or equal to 120), which is the number of intersections in the town. The second line contains a positive integer no_of_streets, which is the number of streets in the town. The next no_of_streets lines, one for each street in the town, are randomly ordered and represent the town's streets. The line corresponding to street k (k <= no_of_streets) consists of two positive integers, separated by one blank: Sk (1 <= Sk <= no_of_intersections) - the number of the intersection that is the start of the street, and Ek (1 <= Ek <= no_of_intersections) - the number of the intersection that is the end of the street. Intersections are represented by integers from 1 to no_of_intersections.

There are no blank lines between consecutive sets of data. Input data are correct.
 

Output
The result of the program is on standard output. For each input data set the program prints on a single line, starting from the beginning of the line, one integer: the minimum number of paratroopers required to visit all the intersections in the town.
 

Sample Input
2 4 3 3 4 1 3 2 3 3 3 1 3 1 2 2 3
 

Sample Output
2 1

题意:给出一个有向图,现在空降伞兵,要让最少的伞兵遍历完该图,求最小的伞兵数目。

思路:很明显的二分图最大独立集的题。

二分图模板请参照:http://blog.csdn.net/martinue/article/details/51548708

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
using namespace std;
typedef long long ll;
const int N=555;///两边的最大数量
bool tu[N][N];
int from[N];///记录右边的点如果配对好了它来自哪里
bool use[N];///记录右边的点是否已经完成了配对
int n,m;///m,n分别表示两边的各自数量,n是左边,m是右边
bool dfs(int x)
{
    for(int i=1; i<=m; i++) ///m是右边,所以这里上界是m
        if(!use[i]&&tu[x][i])
        {
            use[i]=1;
            if(from[i]==-1||dfs(from[i]))
            {
                from[i]=x;
                return 1;
            }
        }
    return 0;
}
int hungary()
{
    int tot=0;
    memset(from,-1,sizeof(from));
    for(int i=1; i<=n; i++) ///n是左边,所以这里上界是n
    {
        memset(use,0,sizeof(use));
        if(dfs(i))
            tot++;
    }
    return tot;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(tu,0,sizeof(tu));
        int x;
        scanf("%d%d",&n,&x);
        m=n;
        while(x--)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            tu[a][b]=1;
        }
        printf("%d\n",n-hungary());
    }
    return 0;
}


版权声明:本文为博主原创文章,若转载请注明转载地址http://blog.csdn.net/martinue。

BZOJ 4808(马-二分图最大独立集)

4808: 马 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 111 Solved: 46 [Submit][Status][Discuss...
  • nike0good
  • nike0good
  • 2017年04月11日 15:59
  • 368

最大独立集问题

最大独立集问题 Given N sets of integers, remove some sets so that the remaining all sets are disjoint ...
  • whosemario
  • whosemario
  • 2013年01月17日 15:50
  • 26977

二分图最大匹配,最小路径覆盖,最小点覆盖,最大独立集,最小边覆盖与建图方法

前言:         有自己写的,有摘的别人的,前面是摘的,也是无心整理,出错是难免的,反正我都不会证明,智人见智,别被我误导了。 §1图论点、边集和二分图的相关概念和性质 点覆盖、最小点覆盖...
  • hitwhacmer1
  • hitwhacmer1
  • 2015年07月02日 01:10
  • 2731

二分图:最大独立集&最大匹配&最小顶点覆盖

最大独立集问题 Given N sets of integers, remove some sets so that the remaining all sets are disjoint wit...
  • lezong2011
  • lezong2011
  • 2013年08月10日 10:16
  • 1372

HDU 1569 - 方格取数(2) 二分图最大点权独立集(构图最大流解)

题意:                       给你一个m*n的格子的棋盘,每个格子里面有一个非负数。从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并...
  • kk303
  • kk303
  • 2013年08月24日 18:31
  • 1611

二分图中对最小顶点覆盖、最小边覆盖、最大独立集的理解

仅仅用于自己理解,若有共鸣,别太吐槽就行哈~ 首先是匈牙利算法的本质:(图参考了zxy的) 这个图要详细看完,那么刚开始我想的“找小三”实际上就是递归找增广路的过程,如果找到增广路,匹配数...
  • Flynn_curry
  • Flynn_curry
  • 2016年10月29日 20:01
  • 2460

动态规划----树型DP----树的最大独立集

一、树型DP的概念 树型DP即在树上进行DP。 树是无环图,顺序可以是从叶子到根节点,也可以从根到叶子节点。 一般树型DP的特征很明显,即状态可以表示为树中的节点,每个节点的状态可以由其子节点状...
  • C20180602_csq
  • C20180602_csq
  • 2017年04月24日 14:05
  • 693

二分图相关定理及其证明(最小点覆盖+最小路径覆盖+最大独立集+最小覆盖集)

①最小路径覆盖: 给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,...
  • qq_34564984
  • qq_34564984
  • 2016年10月10日 16:43
  • 2209

二分图的最大匹配问题完整代码

二分图的最大匹配问题很多博客原理讲的已经很清楚了,贴出来几个链接: 二分图的最大匹配问题解决原理 二分图最大匹配原理 自己花了两天时间敲出来的代码,感觉成长了很多: #include ...
  • bbtl_ast
  • bbtl_ast
  • 2017年06月06日 14:12
  • 630

GYM 100523 I【二分图的最大点权独立集】

Intelligence Quotient ILOAt the University of Byteland one can only study maths and computer science...
  • u013007900
  • u013007900
  • 2015年08月15日 21:33
  • 467
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu1151(二分图最大独立集)
举报原因:
原因补充:

(最多只允许输入30个字)