关闭

时域卷积频域相乘证明

2180人阅读 评论(0) 收藏 举报

时域卷积频域相乘证明

Fri Sep 2 09:35:14 EDT2016


这里考虑的是离散时间信号处理.

y[n] x[n],h[n]的卷积

1 (1)

y[n], x[n],h[n]的离散时间傅立叶变换是

(2)

(3)

(4)


(5)


下面证明等式(5).

(6)

上式k的范围是使-变化到.

是一个关于n的特征函数,它的响应可以直接得到

所以,6的响应是

所以





0
0
查看评论

时域的卷积等于频域的乘积证明

证明[编辑] 这里展示的证明是基于傅立叶变换的特定形式。如果傅里叶变换的形式不同,则推导中将会增加一些常数因子。 令f、g属于L1(Rn)。{\displaystyle F}为{\displaystyle f}的傅里叶变换,{\displaystyle G}为{\displa...
  • taiyangshenniao
  • taiyangshenniao
  • 2017-01-12 16:18
  • 4853

时域卷积与频域乘积

时域卷积与频域乘积
  • jacke121
  • jacke121
  • 2017-02-23 12:02
  • 2231

MATLAB做矩阵卷积 时域做卷积,频域相乘 (时卷频乘) 二维卷积

function out = SJPC(A,B) % 时卷频乘,可用于求矩阵卷积 [ra,ca] = size(A); [rb,cb] = size(B); r = ra+rb-1; % A,B两个矩阵做卷积后其行数和列数分别为A,B矩阵的行列数相加减1 c = ca+cb-1; a1 = [A...
  • scj19910502
  • scj19910502
  • 2014-06-16 21:03
  • 1799

时域卷积与频域乘积

转自:http://blog.csdn.net/jacke121/article/details/56668017 卷积定理:时域的卷积等于频域乘积 情况一,矩阵不拓展: p=[0,-1,0;-1,4,-1;0,-1,0];%矩阵1 x=magic(5);%矩阵2...
  • fengying2016
  • fengying2016
  • 2017-05-21 10:22
  • 385

MFC edit控件实现自动换行

必须设置Vertical Scrollbar = TRUE 必须设置MultiLine = TRUE 必须设置Horizontal Scrollbar = FALSE 必须设置Auto HScroll&#...
  • a200638012
  • a200638012
  • 2016-07-08 17:22
  • 4814

设置MFC Edit control可以换行显示

MFC Edit control可以换行显示 1.设置edit control 属性Multiline为true 2.写入数据时,想换行的时候写入"\r\n"即可,CString str.Replace("\n","\r\n"); ...
  • a780902723
  • a780902723
  • 2014-12-09 16:52
  • 2487

MFC中EDIT控件实现换行

一、通过回车换行: 这里要有两个设置 .将控件的属性设置为Mutilines->true; .将控件的另一个属性设置为Want return->true. 水平和垂直滚动条设置: 水平滚动条,控件属性设置为:Horizontal Scroll->TRUE ...
  • dearwind153
  • dearwind153
  • 2015-12-09 21:13
  • 3907

时域卷积频域相乘证明

时域卷积频域相乘证明 Fri Sep 2 09:35:14 EDT2016 这里考虑的是离散时间信号处理. y[n] 是x[n],h[n]的卷积 (1) y[n], x[n],h[n]的离散时间傅立叶变换是 (2) (3) (4) 则 (5) 下面...
  • matrixvirus
  • matrixvirus
  • 2016-08-28 23:05
  • 2180

卷积

卷积 维基百科,自由的百科全书 跳转至: 导航、 搜索 图示两个方形脉冲波的卷积。其中函数 "g" 首先对  反射,接着平移 "t" ,成为  。那么重叠部份的面积就...
  • wz125
  • wz125
  • 2015-11-11 22:05
  • 1485

图像处理中的数学原理详解17——卷积定理及其证明

卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。换言之,一个域中的卷积对应于另一个域中的乘积,例如,时域中的卷积对应于频域中的乘积。这一定理对拉普拉斯变换、Z变换等各种傅立叶变换的变体同样成立
  • baimafujinji
  • baimafujinji
  • 2015-12-04 21:09
  • 11832
    个人资料
    • 访问:12958次
    • 积分:301
    • 等级:
    • 排名:千里之外
    • 原创:18篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档