关闭

最长回文字符串_manacher算法

72人阅读 评论(0) 收藏 举报
分类:

回文串就是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。回文子串,顾名思义,即字符串中满足回文性质的子串。比如输入字符串 "google”,由于该字符串里最长的对称子字符串是 "goog”,因此输出4。


算法的基本思路是这样的:把原串每个字符中间用一个串中没出现过的字符分隔#开来(统一奇偶),同时为了防止越界,在字符串的首部也加入一个特殊符$,但是与分隔符不同。同时字符串的末尾也加入'\0'。算法的核心:用辅助数组p记录以每个字符为核心的最长回文字符串半径。也就是p[i]记录了以str[i]为中心的最长回文字符串半径。p[i]最小为1,此时回文字符串就是字符串本身。 
示例:原字符串 'abba’,处理后的新串 ' $#a#b#b#a#\0’,得到对应的辅助数组p=[0,1,1,2,1,2,5,2,2,1]。 
程序如下,对应的变量解释在后面

char* predel(string s){
    int len = s.size();
    char * str = new char[2*len+4];
    str[0]='$';
    str[1]='#';
    for(int i=0;i<len;++i){
        str[2*(i+1)]=s[i];
        str[2*(i+1)+1]='#';
    }
    str[2*len+2]='\0';
    return str;
}
public:
    string longestPalindrome(string s) {
        char* pre=predel(s);
        int len = strlen(pre);
        vector<int> p(len,0);
        int pi=0;
        int mx=1;
        p[0]=0;
        for(int i=1;i<len;++i){
            if(mx>i){
                p[i]=min(mx-i,p[2*pi-i]);
            }
            else{
                p[i]=1;
            }
            while(((i+p[i])<len &&(i-p[i])>0)&&pre[i+p[i]]==pre[i-p[i]]){
                p[i]++;
            }
            if(i+p[i]>mx){
                mx=i+p[i];
                pi=i;
            }
        }
        int maxlen=0;
        int start=0;
        for(int i=0;i<p.size();++i){
            if(p[i]>maxlen){
                start=i;
                maxlen=p[i];
            }
        }
        return s.substr((start-maxlen+1)/2,maxlen-1);
    }

面几个变量说明:pi记录具有遍历过程中最长半径的回文字符串中心字符串。mx记录了具有最长回文字符串的右边界。 
image 
pi是最长回文字符串(淡蓝色)的中心,如果以j为中心的最大回文串如上如所示,那么i处的情况与j处相同(关于pi的两侧是对称的)。这样便减少了运算量,i的对称位置是2*pi-i。 
但是有另外一种情况,就是j的一部分超出蓝色部分,这时p[i]=p[j]就不一定对了,如下图 
image 
这就为什么有取最小值这个操作:

if(mx>i)
{    
    p[i]=min(mx-i,p[2*pi-i]);//核心
}

剩下的代码就很容易看懂了。

最后遍历一边p数组,找出最大的p[i]-1就是所求的最长回文字符串长度,说明如下:
(1)因为p[i]记录插入分隔符之后的回文字符串半径,所以以i为中心的回文字符串长度为2*p[i]-1。例如:bb=>#b#b#,中间#的半径为3,回文字符串长度为2*3-1; 
(2)注意上面两个串的关系。 #b#b#减去一个#号的长度就是原来的2倍。即((2*p[i]-1)-1)/2 = p[i]-1,得证。

(3) 最后的子字符串的起点位置。由于半径为maxlen,园心为start,所以起点为(start-maxlen+1),考虑到加‘#"长度加倍,因此再除以2.
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:27054次
    • 积分:2742
    • 等级:
    • 排名:第13102名
    • 原创:258篇
    • 转载:18篇
    • 译文:0篇
    • 评论:0条
    文章分类
    最新评论