最长回文字符串_manacher算法

转载 2016年08月29日 14:24:59

回文串就是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。回文子串,顾名思义,即字符串中满足回文性质的子串。比如输入字符串 "google”,由于该字符串里最长的对称子字符串是 "goog”,因此输出4。


算法的基本思路是这样的:把原串每个字符中间用一个串中没出现过的字符分隔#开来(统一奇偶),同时为了防止越界,在字符串的首部也加入一个特殊符$,但是与分隔符不同。同时字符串的末尾也加入'\0'。算法的核心:用辅助数组p记录以每个字符为核心的最长回文字符串半径。也就是p[i]记录了以str[i]为中心的最长回文字符串半径。p[i]最小为1,此时回文字符串就是字符串本身。 
示例:原字符串 'abba’,处理后的新串 ' $#a#b#b#a#\0’,得到对应的辅助数组p=[0,1,1,2,1,2,5,2,2,1]。 
程序如下,对应的变量解释在后面

char* predel(string s){
    int len = s.size();
    char * str = new char[2*len+4];
    str[0]='$';
    str[1]='#';
    for(int i=0;i<len;++i){
        str[2*(i+1)]=s[i];
        str[2*(i+1)+1]='#';
    }
    str[2*len+2]='\0';
    return str;
}
public:
    string longestPalindrome(string s) {
        char* pre=predel(s);
        int len = strlen(pre);
        vector<int> p(len,0);
        int pi=0;
        int mx=1;
        p[0]=0;
        for(int i=1;i<len;++i){
            if(mx>i){
                p[i]=min(mx-i,p[2*pi-i]);
            }
            else{
                p[i]=1;
            }
            while(((i+p[i])<len &&(i-p[i])>0)&&pre[i+p[i]]==pre[i-p[i]]){
                p[i]++;
            }
            if(i+p[i]>mx){
                mx=i+p[i];
                pi=i;
            }
        }
        int maxlen=0;
        int start=0;
        for(int i=0;i<p.size();++i){
            if(p[i]>maxlen){
                start=i;
                maxlen=p[i];
            }
        }
        return s.substr((start-maxlen+1)/2,maxlen-1);
    }

面几个变量说明:pi记录具有遍历过程中最长半径的回文字符串中心字符串。mx记录了具有最长回文字符串的右边界。 
image 
pi是最长回文字符串(淡蓝色)的中心,如果以j为中心的最大回文串如上如所示,那么i处的情况与j处相同(关于pi的两侧是对称的)。这样便减少了运算量,i的对称位置是2*pi-i。 
但是有另外一种情况,就是j的一部分超出蓝色部分,这时p[i]=p[j]就不一定对了,如下图 
image 
这就为什么有取最小值这个操作:
if(mx>i)
{    
    p[i]=min(mx-i,p[2*pi-i]);//核心
}

剩下的代码就很容易看懂了。

最后遍历一边p数组,找出最大的p[i]-1就是所求的最长回文字符串长度,说明如下:
(1)因为p[i]记录插入分隔符之后的回文字符串半径,所以以i为中心的回文字符串长度为2*p[i]-1。例如:bb=>#b#b#,中间#的半径为3,回文字符串长度为2*3-1; 
(2)注意上面两个串的关系。 #b#b#减去一个#号的长度就是原来的2倍。即((2*p[i]-1)-1)/2 = p[i]-1,得证。

(3) 最后的子字符串的起点位置。由于半径为maxlen,园心为start,所以起点为(start-maxlen+1),考虑到加‘#"长度加倍,因此再除以2.

Manacher算法:求解最长回文字符串,时间复杂度为O(N)

回文串定义:“回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。回文子串,顾名思义,即字符串中满足回文性质的子串。 经常有一些题目围绕回文子串进行讨论...

hdu3068+hdu3294 最长回文字符串的manacher算法

两道题目描述都差不多,关键问题都是求最长回文子串,这里讲解一下manacher算法。...

最长回文字符串_Manacher算法_(O(n))

朴素算法求最长回文字符串包括奇数长的和偶数长的,求的时候都要分情况讨论,Manacher算法做了一个简单的处理,很巧妙地把奇数长度回文串与偶数长度回文串统一考虑,也就是在每个相邻的字符之间插入一个分隔...

Manacher算法:求解最长回文字符串,时间复杂度为O(N)

回文串定义:“回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。回文子串,顾名思义,即字符串中满足回文性质的子串。 经常有一些题目围绕回文子串进行讨论...
  • yzl_rex
  • yzl_rex
  • 2012年08月26日 08:44
  • 31155

最长回文字符串(manacher算法)

偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙。Stupid。 题目描述:     回文串就是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。...

求取最长回文字符串,o(n)的最优算法manacher

算法的第一步就是在每个字符的左右都加上一个#,这样有什么效果呢。 比如aba初始化之后为#a#b#a#,字符串长度为7是奇数。 比如1221初始化之后为#1#2#2#1#,字符串长度为9是奇数。 为什...

Manacher算法:求解最长回文字符串,时间复杂度为O(N)

回文串定义:“回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。回文子串,顾名思义,即字符串中满足回文性质的子串。 经常有一些题目围绕回文子串进行讨论,比如...

Manacher算法:求解最长回文字符串,时间复杂度为O(N)

转载自http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:“回文串”是一个正读和反读都一样的字符串,比如“level”或者“...
  • sanniao
  • sanniao
  • 2015年08月02日 16:48
  • 216

最长回文字符串(manacher算法)

资料来源网络 参见:http://www.felix021.com/blog/read.php?2040 问题描述: 输入一个字符串,求出其中最大的回文子串。子串的含义是:在原串中连续出现...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最长回文字符串_manacher算法
举报原因:
原因补充:

(最多只允许输入30个字)