动态规划之01背包问题

转载 2016年08月30日 12:28:18
转载自:http://blog.sina.com.cn/s/blog_6dcd26b301013810.html
首先是问题描述:给定n种物品和一背包,物品i的重量是wi,其价值是pi,背包的容量是M,问如何选择装入背包中的物品总价值最大?

可以这样理解:背包的背负有上限,因此在这个上限内尽可能多的装东西,并且价值越多越好。
在这里我之想讨论动态规划解决这个问题的详细过程。

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。因为背包的最终最大容量未知,所以,我们得从1到M一个一个的试,比如,刚开始任选N件物品中的一个,看对应的M的背包,能不能放进去,如果能放进去,并且还有多少空间,则,多出来的空间能放N-1物品中的最大价值,怎么能保证总选则是最大价值呢,看下表:
测试数据:

10,3
3,4
4,5
5,6

动态规划之01背包问题

c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.

这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.

从以上最大价值的构造过程中可以看出。

f(n,m)=max{f(n-1,m),f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.

下面是一种实现过程:(C语言描述)


#include<stdio.h>
int c[10][100];
int knapsack(int m,int n)
{
    int i,j,w[10],p[10];
    for(i=1;i<n+1;i++)
    scanf("\n%d,%d",&w[i],&p[i]);
    for(i=0;i<10;i++)
    for(j=0;j<100;j++)
    c[i][j]=0;
    for(i=1;i<n+1;i++)
    for(j=1;j<m+1;j++)
    {
        if(w[i]<=j){
             if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
                 c[i][j]=p[i]+c[i-1][j-w[i]]
             else
                 c[i][j]=c[i-1][j];
        }else 

             c[i][j]=c[i-1][j];
     }
     return(c[n][m]);
}
int main()
{
    int m,n;int i,j;

    printf("inputthe max capacity and the number of thegoods:\n");
    scanf("%d,%d",&m,&n);
    printf("Inputeach one(weight and value):\n");
    printf("%d",knapsack(m,n));
    printf("\n");
    for(i=0;i<10;i++)
        for(j=0;j<15;j++)
        {
             printf("%d",c[i][j]);
             if(j==14)printf("\n");
        }
    system("pause");
}


下面是思路的基本过程

问题的特点是:每种物品一件,可以选择放1或不放0。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,据说基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以详细的查了一下这个方程的含义:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

在有的地方看到的背包问题题目中,有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

小结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故仔细体会上面基本思路的得出方法,状态转移方程

某艺的提前招聘后端开发题目就是0-1背包问题。代码:
#include<iostream>  
#include<vector>
using namespace std;
int maxValue(vector<int> &w, vector<int>& p, const int m, const int n){

	vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
	for (int i = 1; i <= m; ++i){
		for (int j = 1; j <= n; ++j){

			if (w[j] <= i && (dp[i - w[j]][j - 1] + p[j])>dp[i][j - 1]){
				dp[i][j] = dp[i - w[j]][j - 1] + p[j];
			}
			else{
				dp[i][j] = dp[i][j - 1];
			}
		}
	}
	return dp[m][n];
}
int main()
{
	int m, n;
	while (cin >> m >> n){
		vector<int>  w(n + 1, 0);
		vector<int>  p(n + 1, 0);
		for (int i = 1; i <= n; ++i){
			cin >> w[i];
		}
		for (int i = 1; i <= n; ++i){
			cin >> p[i];
		}
		float ans =static_cast<float>(maxValue(w, p, m, n));
		printf("%.1f", ans/10);
		cout << endl;
	}
	system("pause");
	return 0;
}


c c++ 01背包问题动态规划解决

  • 2013年11月05日 16:45
  • 28KB
  • 下载

动态规划解01背包问题

  • 2017年04月18日 20:01
  • 135KB
  • 下载

01背包问题(动态规划)python实现

在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决。n=5是物品的数量,c=...

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程 f[i,j] = M...
  • mu399
  • mu399
  • 2012年07月06日 17:09
  • 231386

01背包问题的动态规划算法

01背包问题我最初学会的解法是回溯法,第一反应并不是用动态规划算法去解答。原因是学习动态规划算法的时候,矩阵连乘、最长公共子串等问题很容易将问题离散化成规模不同的子问题,比较好理解,而对于01背包问题...

C#基于动态规划下的01背包问题

  • 2010年06月14日 13:35
  • 55KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态规划之01背包问题
举报原因:
原因补充:

(最多只允许输入30个字)