齐肯多夫定理--斐波那契数列

   简述

齐肯多夫定理: 任何正整数都可以表示为若干个不连续的斐波那契数之和 .

   证明

一下用F来表示斐波那契数列.
数学归纳法:
1.针对小部分的情况 : 1 = F(2), 2 = F(3), 3 = F(4), 这个命题是成立的, 但是我们需要证明对于任何数都是成立的.
2.针对任意正整数m
     (1)若m为斐波那契数, 命题显然成立.
     (2)若m不为斐波那契数, 设某K1使得 F(K1) < m < F(K1+1)
delta = m - F(K1);
可得 delta = m - F(K1) < F(K1+1) - F(K1) = F(K1-1);
所以 delta < F(K1-1)
因为delta也是一个正整数, 所以由归纳假设, delta也是由不同不连续斐波那契数组成,设为delta = F(K2) + F(K3)...(K2 > K3 ...) . 因为delta < F(K1-1), 所以F(K2) < F(K1-1) < F(K1), 所以F(K2) 与 F(K1) 也不连续, 那么 m = F(K1) + F(K2) + F(K3) + F(K4)... 也是由不同连续斐波那契数组成的.
综上, 由于m是任意的正整数, 且小情况下理论正确, 那么通过上述数学归纳法可证明, 定理正确. 
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值