spring第一个程序笔记

原创 2005年02月26日 19:28:00

SpringFramework下载
http://www.springframework.org/
http://sourceforge.net/project/showfiles.php?group_id=73357
安装
貌似不用,最简单使用只要spring.jar包就可以了
调通例子
使用的是xiaxin给的例子,包含在文档http://www.xiaxin.net/Spring_Dev_Guide.rar中。

例子笔记:(不少摘自该文档)
1. 我们的所有程序代码中(除测试代码之外),并没有出现Spring中的任何组件。
2. UpperAction和LowerAction的Message属性均由Spring通过读取配置文件(bean.xml)动
态设置。
3. 客户代码(这里就是我们的测试代码)仅仅面向接口编程,而无需知道实现类的具体名称。同时,
我们可以很简单的通过修改配置文件来切换具体的底层实现类。

上面所说的这些,对于我们的实际开发有何帮助?
  首先,我们的组件并不需要实现框架指定的接口,因此可以轻松的将组件从Spring中脱离,甚
至不需要任何修改(这在基于EJB框架实现的应用中是难以想象的)。
  其次,组件间的依赖关系减少,极大改善了代码的可重用性。

  Spring的依赖注入机制,可以在运行期为组件配置所需资源,而无需在编写组件代码时就加以
指定,从而在相当程度上降低了组件之间的耦合。
  上面的例子中,我们通过Spring,在运行期动态将字符串 “HeLLo” 注入到Action实现类的
Message属性中。
如果将Message属性换为数据源(DataSource),作用就比较明显了。
-----------
最简单的spring程序只需要2个jar包,spring.jar commons-logging.jar
-----------
依赖注入现实中的例子:
笔记本,usb硬盘,usb U盘,操作系统
笔记本通过usb接口来实现文件访问,而不管设备是什么
操作系统是容器,来根据实际的配置(是插了U盘或移动硬盘),来决定笔记本访问那个设备。
移动硬盘,U盘就具有了重用性,笔记本也获得了扩展性
与这个例子相反的是PS/2键盘,这就是容器没有根据配置来管理注入,直接由主板固定了访问方式。

笔记本电脑与外围存储设备通过预先指定的一个接口(USB)相连,对于笔记本而言,
只是将用户指定的数据发送到USB接口,而这些数据何去何从,则由当前接入的USB设备决定。在USB
设备加载之前,笔记本不可能预料用户将在USB接口上接入何种设备,只有USB设备接入之后,这种设
备之间的依赖关系才开始形成。
对应上面关于依赖注入机制的描述,在运行时(系统开机,USB 设备加载)由容器(运行在笔记本
中的Windows操作系统)将依赖关系(笔记本依赖USB设备进行数据存取)注入到组件中(Windows
文件访问组件)。

本例没有精确的描述概念,但对理解这个概念有一定帮助
-----------
依赖注入的目标并非为软件系统带来更多的功能,而是为了提升组件重用的概率,并为系统搭建一个灵活、可扩展的平台。
----资源-----
有一个Spring的Eclipse插件,提供了Spring的bean.xml的可视化查看,但好像(或许我没找到?)没有提供可视化编辑功能,是Spring网站推荐的工具,插件仍在完善中。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Spring Boot学习笔记-开发第一个应用程序

Spring Boot学习笔记

(一) Spring Boot学习笔记之第一个Spring Boot程序HelloWorld

该系列博文主要会讲述Spring Boot简单使用,首先声明博主也是Spring Boot刚刚入门的菜鸡一枚,在认识方面如果有什么不妥当的地方请大佬们指正。本系列博文主要是参考了官方文档,我只是官方文...

Spring 第一个程序

第一步:集成Spring环境: 1.采用MyEclipse开发环境来搭建Spring框架是非常方便的,操作如下: (如果自己搭建,可以引入Spring相应的jar包进来就可)2.集成后的目...

我的第一个Spring程序

  • 2016-04-08 15:03
  • 15KB
  • 下载

【有配图】Spring Boot 第一个Hello World 程序

前置条件:已安装Eclipse JEE版,已在Eclipse里面安装了Spring IDE的插件 1、打开Eclipse,在Project Exploer的空白区域点击右键,如下图所示:

第一个spring程序

  • 2016-10-03 18:56
  • 9.40MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)