庖丁解牛TLD(四)——Tracking解析

转载 2015年07月10日 23:24:20

前几节都是根据作者的程序流程一步步介绍作者的工作,感觉只是对代码的一个注释,这次换一个思路,一部分一部分啃,作者的工作主要就是3部分么,tracking,learning,detection。

这次先介绍Tracking的工作。对于Tracking,作者主要使用的是他提出的Forward-Backward Error的办法,使用Lucas-Kanade光流法跟踪,对跟踪的结果,用Forward-Backward Error做反馈,求FB error的结果与原始位置的欧式距离,把距离过大的跟踪结果舍弃,他把这种利用FB error舍弃坏值的跟踪方法叫做Median Flow,是把欧式距离集合中较大的50%的那些跟踪结果舍弃。作者在他的文章Forward-Backward Error:Automatic Detection of Tracking Failures里提到用FB+NCC(交叉验证)的方案,可以使跟踪的结果最佳。作者的Tracking的办法就是根据我以上介绍的流程实现的。接下来结合代码再详细剖析一下

先用bb_points函数在box中均匀采样10*10个点,注意作者这里设置了采样点的区域比box的区域少一圈边界,边界为5,在后面我会介绍作者这里的独到用心。然后调用混合编程的lk函数实现lucas-Kanade光流法跟踪,得到的结果有为这100个点的lk结果,前两个参数为利用l-k方法得到的点当前的跟踪位置坐标,第三个参数是利用NCC把跟踪预测的结果周围取10*10的小图片与原始位置周围10*10(这里取10*10,有心的朋友应该笑了,为什么作者之前在bb_points函数里要设置个边界5,原来是防止越界哦)的小图片(使用函数getRectSubPix得到)进行模板匹配(调用matchTemplate),再对匹配的结果归一化,把这个结果保存在第三个参数中,第四个参数为FB error的欧氏距离。这个lk函数过程中有很多参数可以设置,对最终的结果我想应该应该也是有的,有待实验验证。接下来就是利用作者提出的Median Flow,得到NCC和FB error结果的中值,分别去掉中值一半的跟踪结果不好的点,利用这一半(其实不到50%)的跟踪点输入函数bb_predict函数中预测bounding box在当前帧的位置和大小。

这基本就是Tracking工作的主要部分了,至于被遮挡的tracking(tldTrack_occlusion),作者进行了单独处理,下一次再分析。

PS:很感谢最近有些网友与我一起研究TLD,不过本人能力不足,很多东西还是不理解,对于作者detection和learning的工作,感觉那部分的代码实在好比天书,没法拿出来和大家交流了,希望有识之士也能写出来,和大家分享~~

庖丁解牛TLD(四)——Tracking解析 .

本文转自http://blog.csdn.net/yang_xian521/article/details/7079749 前几节都是根据作者的程序流程一步步介绍作者的工作,感觉只是对代码的一个...
  • gxiaob
  • gxiaob
  • 2012年11月21日 16:02
  • 1066

Tracking-Learning-Detection TLD解析三 - Learning学习(跟踪与检测的协调与更新)

在上一篇跟踪器与检测器(tracker and detector)中,我们已经详细介绍了TLD中跟踪器与检测器的设计方案,而在具体运行过程中需要对二者进行调和,所谓调和主要指两方面: 1.对二者输出...
  • outstandinger
  • outstandinger
  • 2013年06月04日 17:12
  • 4292

TLD(Tracking-Learning-Detection)学习与源码理解之(分类器)

下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很...
  • mydear_11000
  • mydear_11000
  • 2015年08月24日 10:04
  • 970

深度学习tracking学习笔记(3):TLD(Tracking-Learning-Detection)学习与源码理解

zouxy09@qq.com http://blog.csdn.net/zouxy09            TLD(Tracking-Learning-Detection)是英国萨里大学的一个...
  • u011534057
  • u011534057
  • 2016年06月23日 11:09
  • 3828

庖丁解牛TLD

一、庖丁解牛TLD——开篇 最近在网上多次看到有关Zdenek Kalal的TLD的文章,说他做的工作如何的帅,看了一下TLD的视频,感觉确实做的很好,有人夸张的说他这个系统可以和Kn...
  • GarfieldEr007
  • GarfieldEr007
  • 2015年11月21日 19:53
  • 1247

TLD Tracker

Kalal是英国萨里大学的一个捷克学生。他演示的是他的神奇的精确定位系统,这个系统几乎可以跟踪镜头里的任何物体,只要你能看见它,并把它选中。它能 做很多神情的事情。在这个视频中,他演示了通过摄像机拍摄...
  • lemianli
  • lemianli
  • 2016年07月15日 16:37
  • 236

TLD(Tracking-Learning-Detection)一种目标跟踪算法

TLD(Tracking-Learning-Detection)一种目标跟踪算法   原文:http://blog.csdn.net/mysniper11/article/details/87266...
  • Real_Myth
  • Real_Myth
  • 2016年08月30日 16:49
  • 1389

TLD C++版代码

有大神将TLD代码整理成C++形式,可以在Ubuntu下跑通,这是实现方法。 This will be a C++ implementations of the OpenTLD (aka Pre...
  • abc869788668
  • abc869788668
  • 2017年04月20日 16:13
  • 426

庖丁解牛TLD(一)——开篇 .

本文转自http://blog.csdn.net/yang_xian521/article/details/6952870 最近在网上多次看到有关Zdenek Kalal的TLD的文章,说他做的...
  • gxiaob
  • gxiaob
  • 2012年11月21日 15:57
  • 1300

基于核化相关滤波器的跟踪-效果直逼Struck和TLD跟踪器

原文:http://cvlab.hanyang.ac.kr/tracker_benchmark_v10.html 作者ECCV2012的文章就被我关注过,速度惊人的快。2015年新作出来了。发文以供...
  • huixingshao
  • huixingshao
  • 2015年02月09日 10:38
  • 14568
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:庖丁解牛TLD(四)——Tracking解析
举报原因:
原因补充:

(最多只允许输入30个字)