庖丁解牛TLD(四)——Tracking解析

转载 2015年07月10日 23:24:20

前几节都是根据作者的程序流程一步步介绍作者的工作,感觉只是对代码的一个注释,这次换一个思路,一部分一部分啃,作者的工作主要就是3部分么,tracking,learning,detection。

这次先介绍Tracking的工作。对于Tracking,作者主要使用的是他提出的Forward-Backward Error的办法,使用Lucas-Kanade光流法跟踪,对跟踪的结果,用Forward-Backward Error做反馈,求FB error的结果与原始位置的欧式距离,把距离过大的跟踪结果舍弃,他把这种利用FB error舍弃坏值的跟踪方法叫做Median Flow,是把欧式距离集合中较大的50%的那些跟踪结果舍弃。作者在他的文章Forward-Backward Error:Automatic Detection of Tracking Failures里提到用FB+NCC(交叉验证)的方案,可以使跟踪的结果最佳。作者的Tracking的办法就是根据我以上介绍的流程实现的。接下来结合代码再详细剖析一下

先用bb_points函数在box中均匀采样10*10个点,注意作者这里设置了采样点的区域比box的区域少一圈边界,边界为5,在后面我会介绍作者这里的独到用心。然后调用混合编程的lk函数实现lucas-Kanade光流法跟踪,得到的结果有为这100个点的lk结果,前两个参数为利用l-k方法得到的点当前的跟踪位置坐标,第三个参数是利用NCC把跟踪预测的结果周围取10*10的小图片与原始位置周围10*10(这里取10*10,有心的朋友应该笑了,为什么作者之前在bb_points函数里要设置个边界5,原来是防止越界哦)的小图片(使用函数getRectSubPix得到)进行模板匹配(调用matchTemplate),再对匹配的结果归一化,把这个结果保存在第三个参数中,第四个参数为FB error的欧氏距离。这个lk函数过程中有很多参数可以设置,对最终的结果我想应该应该也是有的,有待实验验证。接下来就是利用作者提出的Median Flow,得到NCC和FB error结果的中值,分别去掉中值一半的跟踪结果不好的点,利用这一半(其实不到50%)的跟踪点输入函数bb_predict函数中预测bounding box在当前帧的位置和大小。

这基本就是Tracking工作的主要部分了,至于被遮挡的tracking(tldTrack_occlusion),作者进行了单独处理,下一次再分析。

PS:很感谢最近有些网友与我一起研究TLD,不过本人能力不足,很多东西还是不理解,对于作者detection和learning的工作,感觉那部分的代码实在好比天书,没法拿出来和大家交流了,希望有识之士也能写出来,和大家分享~~

庖丁解牛TLD(五)——井底之蛙啦~

随着和我交流TLD的朋友越来越多,我渐渐的知道的也多了,才发现我研究的结果只是沧海一粟。 这里先膜拜一下Alan Torres大神,他已经用c++把TLD重新写好了,而且代码很规范。他设计的理念有:...
  • mcumsj1
  • mcumsj1
  • 2015年07月10日 23:25
  • 306

Cascade Classifier 用做人脸识别的方法及例程

Cascade Classifier 是Opencv中一个级联分类器,我学习Opencv的过程中,做了些笔记还有翻译了一些指导书。可供需要的人士参考,因本人学历不高。翻译中肯定要不到位、不准确的地方,...

庖丁解牛TLD(四)——Tracking解析

前几节都是根据作者的程序流程一步步介绍作者的工作,感觉只是对代码的一个注释,这次换一个思路,一部分一部分啃,作者的工作主要就是3部分么,tracking,learning,detection。 这次...

庖丁解牛TLD(三)——算法初始化 .

转自:http://blog.csdn.net/yang_xian521/article/details/6957732 上一讲我提到对于算法的初始化工作主要是在tldInit这个函数里实现的。主要...

庖丁解牛TLD(一)——开篇

最近在网上多次看到有关Zdenek Kalal的TLD的文章,说他做的工作如何的帅,看了一下TLD的视频,感觉确实做的很好,有人夸张的说他这个系统可以和Kniect媲美,我倒是两者的工作可比性不大,实...

庖丁解牛TLD(五)——井底之蛙啦~

随着和我交流TLD的朋友越来越多,我渐渐的知道的也多了,才发现我研究的结果只是沧海一粟。 这里先膜拜一下Alan Torres大神,他已经用c++把TLD重新写好了,而且代码很规范。他设计的理念有:...

庖丁解牛TLD(三)——算法初始化

上一讲我提到对于算法的初始化工作主要是在tldInit这个函数里实现的。主要分为如下几大步骤,1)初始化Detector。2)初始化Trajectory。3)训练Detector 1)初始化Dete...

庖丁解牛TLD(一)——开篇

最近在网上多次看到有关Zdenek Kalal的TLD的文章,说他做的工作如何的帅,看了一下TLD的视频,感觉确实做的很好,有人夸张的说他这个系统可以和Kniect媲美,我倒是两者的工作可比性不大,实...

庖丁解牛TLD(一)——开篇

最近在网上多次看到有关Zdenek Kalal的TLD的文章,说他做的工作如何的帅,看了一下TLD的视频,感觉确实做的很好,有人夸张的说他这个系统可以和Kniect媲美,我倒是两者的工作可比性不大,实...
  • mcumsj1
  • mcumsj1
  • 2015年07月10日 23:11
  • 561

庖丁解牛TLD(二)——初始化工作(为算法的准备)

我说的初始化,还不是算法的初始化工作,而是读入图像,响应键盘鼠标之类的工作。作者提供的代码中的工作包含了从摄像头读取和从文件中读取两种输入方案。这里介绍一下从文件输入的办法。因为OpenCV从视频读取...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:庖丁解牛TLD(四)——Tracking解析
举报原因:
原因补充:

(最多只允许输入30个字)