Tensorflow #3 使用DNN构造Iris分类器

本文详述如何使用TensorFlow的高级API `tf.contrib.learn`创建一个深度神经网络(DNN)分类器,对Iris数据集进行分类。内容包括数据加载、DNN模型构建、训练、模型评估及新数据预测。通过3层DNN实现,测试集准确率约96%。
摘要由CSDN通过智能技术生成

1 前言

这篇文章主要是根据Tensorflow官方的API文档整理得到的。
本文的主要目的是学习使用Tensorflow提供的机器学习API,构建一个基于神经网络的分类器,对经典的Iris分类数据进行分类。这里的高级API主要是指代tf.contrib.learn里提供的API,

2 步骤

首先这里说一下基本步骤:

  1. 从原始数据集的CSV里面读取数据,并且加载到Tensorflow当中
  2. 构建一个基于神经网络的分类器
  3. 使用训练数据进行模型训练
  4. 使用测试数据进行模型评估
  5. 使用训练好的模型对新的数据进行分类

2.1 数据加载

Iris这个数据集相信大家在往上看的也很多了,这里就不详细介绍了,只说明一些基本情况。
这个数据集包含150行数据,有三种不同的Iris品种。每一行数据出了品种的标注信息以外,还包含了一些参数如萼片的长度、宽度等信息。
这里写图片描述
在这里,已经提前将这些数据划分为训练集和测试集了,分别是120行和30行
A training set of 120 samples (iris_training.csv)

Atest set of 30 samples (iris_test.csv)..

准备好这些数据后,我们先完成第一部分代码,引入Tensorflow和加载数据

#coding:utf-8

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function



import tensorflow as tf

import numpy as np



# 设定数据集的位置

IRIS_TRAINING = "iris_training.csv"

IRIS_TEST = "iris_test.csv"



# 使用Tensorflow内置的方法进行数据加载
,target_type是最终的label的类型,这里只有012三个取值,所以用int
training_set = tf.contrib
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值