Bellman-ford变形 poj1860 Currency Exchange

原创 2015年11月18日 16:41:02

//bellman-ford 算法
//判断有无环
//对于每条路进行更新,最大的环为n-1,所以最多进行n-1次更新(其实就是以s为原点的一个最短路的树)
//那么对于第n次,还能进行更新那么就能存在环
//模板:
dis[s] = 0;
MEM(dis,inf);
for(int i=1;i<n;i++){
	int flag = 0; // 优化
	for(int j=1;j<=m;j++){
		if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost){
			dis[edge[j].v] = dis[edge[j].u] + edge[j].cost
			flag = 1;
		}
	}
	if(!flag){
		break;//如果不能再更新了,那么就直接跳出,优化
	}
}
//判断是否有环
for(int j=1;j<=m;j++){
	if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost){
			return true;//还能更新,有环
		}
}
return false;

 bellman-ford 判断是针对图,整个图可以有多个联通分块

这道题要找正环

同理可得,把每次更新的条件换一下就行

代码如下

<pre name="code" class="cpp">#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <climits>
#include <string>
#include <vector>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <sstream>
#include <cctype>
using namespace std;
typedef long long ll;
typedef pair<int ,int> pii;
#define MEM(a,b) memset(a,b,sizeof a)
#define CLR(a) memset(a,0,sizeof a);
const int inf = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
struct Node
{
	int v;
	int u;
	double rate;
	double com;
};
double dis[200];
Node edge[400];
double get(double v,double rate, double com){
	return (v-com)*rate;
}
int main()
{
#ifdef LOCAL
	freopen("in.txt", "r", stdin);
//	freopen("out.txt","w",stdout);
#endif
	int n,m,s;
	double v;
	while(cin >> n >>m >> s >> v){
		int cnt = 0;
		for(int i=1;i<=m;i++){
			int u,v;
			cin >> u >> v;
			Node node;node.v = v,node.u = u;
			cin >> node.rate >> node.com;
			edge[++cnt] = node;
			node.v = u,node.u = v;
			cin >> node.rate >> node.com;
			edge[++cnt] = node;
		}
		CLR(dis);
		dis[s] =  v;
		int ans = 0;
		for(int i=1;i<n;i++){
			int flag = 0;
			for(int j=1;j<=m*2;j++){
				double ans = get(dis[edge[j].u],edge[j].rate,edge[j].com);
				if(dis[edge[j].v] < ans){
					dis[edge[j].v] = ans;
					flag = 1;
				}
			}
			if(!flag)break;
		}
		for(int j=1;j<=m*2;j++){
			if(dis[edge[j].v] < get(dis[edge[j].u],edge[j].rate,edge[j].com))ans = 1;
		}
		if(ans){
			printf("YES\n");
		}
		else printf("NO\n");
	}
	return 0;
}











            
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 1860 Currency Exchange Bellman-Ford算法求单源最短路径并判断是否有正权回路

#include #include #include #include #include #include #include #include #include #include #include #...

poj1860 Currency Exchange --- Bellman-Ford

题目大意:小明有一种Currency,可以换成其它的再换回来,换的时候要交一点commission,问最后他的钱会不会变多。 思路:首先必然是要有环的,然后这个环应该是转一圈下来是正的(正常...

POJ 1860 Currency Exchange(Bellman-Ford)

题目大意 给出n个顶点,m条边,原点s及初始金钱v。每条边有6个参数from, to, c1, r1, c2, r2。 假设在from出有v的金钱,从from -> to,金钱 = (v - c1) ...

POJ 1860 Currency Exchange (Bellman-Ford算法的运用)

题目类型  四边形不等式优化DP 题目意思 给出 n  (1 解题方法 很容易得出朴素的dp转移方程 dp[i][j] = Min( dp[i][k...

Bellman-Ford-POJ-1860-Currency Exchange

Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 23595 Acc...

POJ 1860 Currency Exchange (Bellman-Ford 找正环)

Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 19715 Accepte...

poj 1860 Currency Exchange (Bellman_ford 算法)

题目连接:点击打开链接 翻译题目: 城市里有几个货币兑换点,让我们假设每个点是给给两种特定的货币的进行相互兑换的操作,每个兑换点都有其自己的兑换率,且A到B的兑换率等同于B到A的兑换率。同样每个兑...

POJ-1860 Currency Exchange(Bellman-Ford)

由于本题是要求走一圈后,权值变大,所以更改Bellman-Ford的初始条件和更新条件,即可更改为求已s为起点的“最长路”,因为更新方法变了,所以每次能更新到的点必定是s点可达的点,即也再可兑换回s,...

Poj 1860 Currency Exchange(Bellman-Ford,SPFA解单源最短路径问题)

一、题意          有多个货币交易点,每个只能互换两种货币,兑换的汇率不同,并收取相应的手续费。有N中货币,假定你拥有第S中,数量为V。现有M个兑换的。问你能不能通过兑换操作使你最后拥有的S币...

POJ 1860 Currency Exchange(Bellman-Ford判断最长路是否含有正环)

题目链接:kuangbin带你飞 专题四 最短路练习 E - Currency Exchange题意 有n种货币,你含有num面额的其中一种货币。 给定m种交易明细,即货币a和b之间的手续费...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)