关闭

机器学习笔记1

76人阅读 评论(0) 收藏 举报


机器学习模型是特征空间到输出空间的映射,一般有假设函数和参数w组成。一个模型的假设空间(hypothesis space)是指给定所有的可能的参数w对应的输出空间的集合。(参考链接:http://tech.meituan.com/mt-mlinaction-how-to-ml.html

模型训练就是基于训练数据,获得一组参数w是得特定目标最优,即获得了特征空间到输出空间的最优映射。

评价分类模型模型好坏可以采用Area Under Curve(AUC)  和 Mean Absolute Error (参考链接http://www.cnblogs.com/lixiaolun/p/4053499.html


完成数据的筛选和清洗之后,就完成了输入空间特征空间的转换,线性模型和非线性模型的需要进行不同特征的抽取,线性模型特征抽取要求高,非线性模型要求比较低。特征分为high level 和 low level (参考链接http://blog.csdn.net/chloezhao/article/details/53444856)

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:754次
    • 积分:69
    • 等级:
    • 排名:千里之外
    • 原创:5篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类