关闭

机器学习笔记1

99人阅读 评论(0) 收藏 举报


机器学习模型是特征空间到输出空间的映射,一般有假设函数和参数w组成。一个模型的假设空间(hypothesis space)是指给定所有的可能的参数w对应的输出空间的集合。(参考链接:http://tech.meituan.com/mt-mlinaction-how-to-ml.html

模型训练就是基于训练数据,获得一组参数w是得特定目标最优,即获得了特征空间到输出空间的最优映射。

评价分类模型模型好坏可以采用Area Under Curve(AUC)  和 Mean Absolute Error (参考链接http://www.cnblogs.com/lixiaolun/p/4053499.html


完成数据的筛选和清洗之后,就完成了输入空间特征空间的转换,线性模型和非线性模型的需要进行不同特征的抽取,线性模型特征抽取要求高,非线性模型要求比较低。特征分为high level 和 low level (参考链接http://blog.csdn.net/chloezhao/article/details/53444856)

0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

[机器学习入门] 李宏毅机器学习笔记-1(Learning Map 课程导览图)

自1956年提出人工智能的概念,其一方面被认为是人类文明未来的发展方向,另一方面也被认为是难以企及的梦想。然而过去几年,随着GPU并行计算性能的强大和海量数据的收集,人工智能取得了爆发性增长。而增长的...
  • soulmeetliang
  • soulmeetliang
  • 2017-05-20 23:46
  • 3016

《机器学习实战》笔记之九——树回归

第九章 树回归 CART算法回归与模型树树减枝算法python中GUI的使用 线性回归需要拟合所有的样本点(局部加权线性回归除外),当数据拥有众多特征并且特征之间关系十分复杂时,就不可能使用全...
  • u010454729
  • u010454729
  • 2015-10-06 11:32
  • 2463

[机器学习入门] 李宏毅机器学习笔记-10 (Tips for Deep Learning;深度学习小贴士)

[机器学习入门] 李宏毅机器学习笔记-10 (Tips for Deep Learning;深度学习小贴士) PDF VIDEORecipe of Deep Learning 在 train...
  • soulmeetliang
  • soulmeetliang
  • 2017-06-06 23:00
  • 1718

机器学习笔记Week1

  • 2017-06-08 10:52
  • 206KB
  • 下载

机器学习笔记(1)---基本知识

基本知识 ①数据集:一组数据的集合被称为数据集。有时,整个数据集也被称为样本。 ②从数据中学的模型的过程称为学习(learning)或者训练(training)。整个过程通过执行某个学习算法完成,...
  • Dzjian_
  • Dzjian_
  • 2017-03-22 22:15
  • 292

Andrew Ng机器学习笔记1

吴恩达机器学习课程的学习笔记~
  • panglinzhuo
  • panglinzhuo
  • 2016-04-26 16:15
  • 1277

【机器学习笔记】1.数据归一化

在机器学习入门的过程中,我们经常见到在导入数据时,常常出现的一步操作叫做数据归一化(normalization),一开始我并不知道它的作用,甚至发现有些时候去掉数据归一化的步骤,代码一样可以运行,机器...
  • lvweiyimi2b
  • lvweiyimi2b
  • 2017-01-23 16:25
  • 1166

机器学习笔记week1(Andrew NG)

机器学习笔记week1(Andrew NG)martin机器学习笔记week1Andrew NG Linear Regression with one Variable单变量线性回归 Model an...
  • ice_martin
  • ice_martin
  • 2017-03-09 21:44
  • 489

机器学习笔记(1)-线性回归

线性回归一. 问题概述 二. 线性回归的的求解 最小二乘法 1.1. 特点 Normal Equation算法也叫做普通最小二乘法(ordinary least squares),其特点...
  • yyHaker
  • yyHaker
  • 2017-04-17 20:24
  • 503

机器学习笔记1-k近邻算法的实现

k_近邻算法:采用测量不同特征值之间的距离方法进行分类. 优点:精度高,对异常值不明感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型 步骤如下: 1.计算一...
  • qq_35488769
  • qq_35488769
  • 2017-05-17 15:28
  • 140
    个人资料
    • 访问:1800次
    • 积分:136
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:7篇
    • 译文:0篇
    • 评论:0条
    文章分类