关闭

机器学习笔记2

153人阅读 评论(0) 收藏 举报

机器学习简介:参考链接http://tech.meituan.com/mt-mlinaction-how-to-ml.html

特征抽取简介:http://tech.meituan.com/machinelearning-data-feature-process.html

逻辑回归:http://tech.meituan.com/intro_to_logistic_regression.html

《elements of statistical learning》
http://en.wikipedia.org/wiki/Supervised_learning
http://www.cnblogs.com/heaad/archive/2011/01/02/1924088.html
http://zh.wikipedia.org/zh-cn/维数灾难
http://www.cs.waikato.ac.nz/ml/weka/
http://blog.csdn.net/lihaifeng555/article/details/4543752
http://blog.csdn.net/abcjennifer/article/details/8002329
http://www.cnblogs.com/leftnoteasy/archive/2011/01/08/lda-and-pca-machine-learning.html


  • Trevor Hastie et al. The elements of statistical learning
  • Andrew Ng, CS 229 lecture notes
  • C.M. Bishop, Pattern recognition and machine learning
  • Andrew Ng et al. On discriminative vs. generative classifiers:a comparison of logistic regression and naïve bayes
  • Wikipedia, http://en.wikipedia.org/wiki/Logistic_regression

0
0
查看评论

《机器学习》第二章 模型评估与选择 笔记3 查准率、查全率

二分类True positive 真正例(TP)False positive 假正例(FP)True negative 真反例(TN)False negative 假反例(FN)TP+FP+TN+FN = 样例总数查准率P与查全率R分别定义为: 通常,查准率高时,查全率偏低;查全率高时,查准率偏低...
  • TsinLau
  • TsinLau
  • 2017-10-11 18:46
  • 77

斯坦福机器学习网易公开课笔记14

主成分分析是一种常用的降低数据维度的算法。先假设我们有一个非监督学习问题,给出一个包含m个样本的训练数据集{x^((1) ),…,x^((m))},每个样本数据都是一个n维向量。目标是将其降维成为一个维度更低的数据集合,降维后每个样本数据都是一个k维向量,k远小于n。
  • zhonglj0314
  • zhonglj0314
  • 2017-03-13 18:52
  • 454

吴恩达机器学习笔记(二)(附编程作业链接)

吴恩达机器学习笔记(二)标签: 机器学习吴恩达机器学习笔记二 一逻辑回归logistic regression 逻辑函数S型函数logistic function and sigmoid function 决策边界decision boundary 代价函数cost function 代价函数的简化...
  • allen_li123
  • allen_li123
  • 2017-12-11 03:52
  • 187

【机器学习-斯坦福】学习笔记2 - 监督学习应用与梯度下降

监督学习应用与梯度下降 本课内容: 1、  线性回归 2、  梯度下降 3、  正规方程组     (复习)监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案   1、  线性回归 例:Alvi...
  • maverick1990
  • maverick1990
  • 2013-09-05 22:53
  • 9479

>吴恩达机器学习笔记(1)

机器学习的基本介绍以及对线性问题求解问题的基本阐述 1、机器学习的用途 1). 用来进行数据挖掘 2). 让机器进行自我学习 3). 能对用户进行个性化定制的应用程序 4). 了解人类大脑的运行机制 2、什么是机器学习 Arthor Samuel的定义:是在没有对机器进行明确...
  • u014088761
  • u014088761
  • 2017-11-16 14:35
  • 73

机器学习笔记(二)(Draft Version)

摘要 笔记(一)中讨论的情况显示,模型越复杂并不一定error越小。那所以这些error到底来自什么地方呢? 1. bias 2. variance 在具体训练过程中,如果可以诊断error的来源就可以选择合适的方法来improve你的model。 Lecture2.Where doe...
  • yucicheung
  • yucicheung
  • 2017-09-18 15:12
  • 338

斯坦福大学的机器学习笔记SVM初探详解

最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识。 一、什么是支持向量机(SVM)? 1、支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。支持向...
  • AnneQiQi
  • AnneQiQi
  • 2017-04-11 14:41
  • 1014

Andrew Ng机器学习课程笔记--week4

Neural Networks: Representation一、 内容概要 Neural Network Model Representation 1 Model Representation 2 Applications Examples and Intuitions 1 Examples ...
  • marsggbo
  • marsggbo
  • 2017-08-03 16:36
  • 226

机器学习笔记一:关于机器学习

这本笔记的参考书目和课程为: 《机器学习基础教程》:机械工业出版社 模式识别与机器学习(PRML) 统计学习方法:清华大学出版社,李航 Deep Learning:Ian Goodfellow,Yoshua Bengio,Aaron Counrville 斯坦福《机器学习公开课》吴恩达 ...
  • xierhacker
  • xierhacker
  • 2016-11-21 15:54
  • 1359

吴恩达 机器学习笔记八(lecture 8)(神经网络一)

神经网络一(Neural Networks)表层结构 1、Non-linear hypotheses 用逻辑回归算法来做这个分类的话,首先要构造逻辑回归函数。这个例子只有两个特征值,但是当我们包含多个特征值的时候,这种分类器就很局限。 当我们识别一辆车的时候,我们是根据图片每个部位的灰度...
  • cheneykl
  • cheneykl
  • 2017-12-02 22:45
  • 113
    个人资料
    • 访问:2558次
    • 积分:144
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:7篇
    • 译文:0篇
    • 评论:0条
    文章分类