hdu 1245 Saving James Bond【floyd】

原创 2016年05月31日 18:04:15

Saving James Bond

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2954    Accepted Submission(s): 579

Problem Description

This time let us consider the situation in the movie "Live and Let Die" in which James Bond, the world's most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake filled with crocodiles. There he performed the most daring action to escape -- he jumped onto the head of the nearest crocodile! Before the animal realized what was happening, James jumped again onto the next big head... Finally he reached the bank before the last crocodile could bite him (actually the stunt man was caught by the big mouth and barely escaped with his extra thick boot).
Assume that the lake is a 100×100 square one. Assume that the center of the lake is at (0,0) and the northeast corner at (50,50). The central island is a disk centered at (0,0) with the diameter of 15. A number of crocodiles are in the lake at various positions. Given the coordinates of each crocodile and the distance that James could jump, you must tell him whether he could escape.If he could,tell him the shortest length he has to jump and the min-steps he has to jump for shortest length.

Input

The input consists of several test cases. Each case starts with a line containing n <= 100, the number of crocodiles, and d > 0, the distance that James could jump. Then one line follows for each crocodile, containing the (x, y) location of the crocodile. Note that x and y are both integers, and no two crocodiles are staying at the same position. 

Output

For each test case, if James can escape, output in one line the shortest length he has to jump and the min-steps he has to jump for shortest length. If it is impossible for James to escape that way, simply ouput "can't be saved".

Sample Input

4 10

17 0

27 0

37 0

45 0

1 10

20 30

Sample Output 

42.50 5

can't be saved

Author

weigang Lee

 

题目大意:在直角坐标系中,以(-50,50)和(50,-50)为两个顶点组成的矩形表示这是要逃脱的区域,有一个以原点为中心,以15为直径的原型岛屿,主人公从岛屿出发,跳出矩形,问在每次跳跃不超过距离d条件下的:最小跳出的距离,和这种条件下的最小步数。


概括思路:

设定起点为(0,0),然后求出起点到其他各个点的最短距离,然后对于map【0】【i】,枚举其点i到终点的距离,然后加上map【0】【i】求最小的即可;


细节实现:

1、因为我们从起点出发其实并不是从(0,0)点出发跳跃,而是从以其围成的圆上的点出发开始跳跃的,所以:

map【0】【i】=dis(原点,i)-7.5;
map【i】【j】=dis(i,j);

2、对于求最短路部分:jumpp【i】【j】表示点i跳到点j需要跳跃几步。

因为点比较少,所以直接floyd即可,在floyd的过程的同时,其实就可以处理掉跳跃几步的问题:

if(map【j】【k】 >map【j】【i】+map【i】【k】)map【j】【k】 =map【j】【i】+map【i】【k】;jumpp【j】【k】=jumpp【j】【i】+jumpp【i】【k】;

这里注意一个点,如果map【j】【k】 ==map【j】【i】+map【i】【k】,我们要对jumpp【】【】进行单独更新,代码实现为:

        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
            {
                for(int k=0;k<=n;k++)
                {
                    if(map[j][k]>map[j][i]+map[i][k])
                    {
                        map[j][k]=map[j][i]+map[i][k];
                        jump[j][k]=jump[j][i]+jump[i][k];
                    }
                    if(fabs(map[j][k]-map[j][i]+map[i][k])<eps)//精度控制细节
                    {
                        jump[j][k]=min(jump[j][k],jump[j][i]+jump[i][k]);
                    }
                }
            }
        }
3、这样我们就能求出从起点到其他各点的距离,然后我们枚举所有map【0】【i】,并且判断从点i到终点的距离能否跳跃过去,如果能,相对比较大小即可,代码实现为:

        for(int i=0;i<=n;i++)
        {
            double dd=min(min(50-x[i],x[i]+50),min(50-y[i],y[i]+50));//点i到终点的距离。
            if(dd>d)continue;//如果跳不到终点继续判断下一个点。
            else
            {
                if(output>map[0][i]+dd)
                {
                    output=map[0][i]+dd;
                    jumpp=jump[0][i]+1;
                    ok=1;//标记上能够到达终点。
                }
                if(fabs(output-map[0][i]-dd)<eps)//这里不要忘记。
                {
                    jumpp=min(jumpp,jump[0][i]+1);
                }
            }
        }
4、注意一个点,如果d>42.5的话,就不需要这么些操作了,直接输出42.5 1即可。

AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std;
#define eps 1e-5
double map[105][105];
int jump[105][105];
int x[105];
int y[105];
double dis(int x1,int y1,int x2,int y2)
{
    double x=x1-x2;
    double y=y1-y2;
    return sqrt(x*x+y*y);
}
int main()
{
    int n;double d;
    while(~scanf("%d%lf",&n,&d))
    {
        x[0]=0;
        y[0]=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&x[i],&y[i]);
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
            {
                map[i][j]=0x3f3f3f3f;
                jump[i][j]=1;
                jump[i][i]=0;
            }
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
            {
                if(i==j)
                {
                    map[i][j]=0;continue;
                }
                double dd=dis(x[i],y[i],x[j],y[j]);
                if(i==0)dd-=7.50;
                if(dd>d)continue;
                if(dd<0)continue;
                map[i][j]=min(dd,map[i][j]);
            }
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
            {
                for(int k=0;k<=n;k++)
                {
                    if(map[j][k]>map[j][i]+map[i][k])
                    {
                        map[j][k]=map[j][i]+map[i][k];
                        jump[j][k]=jump[j][i]+jump[i][k];
                    }
                    if(fabs(map[j][k]-map[j][i]+map[i][k])<eps)
                    {
                        jump[j][k]=min(jump[j][k],jump[j][i]+jump[i][k]);
                    }
                }
            }
        }
        int ok=0;
        int jumpp=0;
        double output=0x3f3f3f3f;
        if(d>=42.50)
        {
            printf("42.50 1\n");
            continue;
        }
        for(int i=0;i<=n;i++)
        {
            double dd=min(min(50-x[i],x[i]+50),min(50-y[i],y[i]+50));
            if(dd>d)continue;
            else
            {
                if(output>map[0][i]+dd)
                {
                    output=map[0][i]+dd;
                    jumpp=jump[0][i]+1;
                    ok=1;
                }
                if(fabs(output-map[0][i]-dd)<eps)
                {
                    jumpp=min(jumpp,jump[0][i]+1);
                }
            }
        }
        if(ok==1)
        {
            printf("%.2lf %d\n",output,jumpp);
        }
        else printf("can't be saved\n");
    }
    return 0;
}
/*
12 5
8 0
9 0
10 0
13 0
18 0
23 0
28 0
33 0
38 0
39 0
43 0
48 0
16 5
8 0
9 0
12 0
17 0
22 0
27 0
32 0
31 0
3 0
45 0
13 0
19 0
25 0
37 0
42 0
47 0
*/




版权声明:0.0小白有写的不好不对的地方请指出~ 举报

相关文章推荐

hdu 1245 Saving James Bond【floyd】

Saving James Bond Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth...

HDU 1245 Saving James Bond(Floyd)

HDU 1245 Saving James Bond(Floyd) http://acm.hdu.edu.cn/showproblem.php?pid=1245 题意:你在一个圆形岛上,需要通过跳跃踩...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

HDU-1245-Saving James Bond

ACM模版描述题解给定一个100X100的池子,中间(0, 0)处有一个直径为15的岛,然后湖中有许多踏点,问能否踩着踏点蹦跶出来,当然,有一个最远的蹦跶的距离d。思路很清晰,最短路,只要求出两两点之...
  • f_zyj
  • f_zyj
  • 2016-11-14 18:41
  • 146

hdu 1245 Saving James Bond

点击打开链接hdu 1245 思路:最短路+floyd 分析: 1 题目讲的是有一个湖100x100这个人刚开始在一个直径为15的圆心在原点的园内,然后要通过跳跃的方式问我们他是否能...

HDU 1245 Saving James Bond

计算几何+SPFA 我已经不想看我的提交记录了。。。。 HDU 我起码WA了2页。。。。 都是浮点数惹的祸。 const double eps=1e-4; a-b 这样来判断相等。 总共 n...

SFPA hdu 1245 Saving James Bond

题意 : 有个人在湖中心的圆台上,需要跑到湖外,湖上游鳄鱼,需要踩着鳄鱼跳出去,每次能跳的距离是d,给定n条鳄鱼的坐标,问是否能跳到湖外。 思路很简单,令0表示湖心,n+1表示湖外,用spfa求0到...

hdu 1245 Saving James Bond dij

题目大意 有一个100*100的正方形湖,湖中间有一个直径为15的圆形小岛; 有n个点随机分布在这个正方形中; 一个人要从小岛上跳出湖外,可以跳跃在这些点上; 人每一步能跳的最大距离为d; 求能跳出...

HDOJ 1245 Saving James Bond

题目链接:............ 思路:岛为起点,把每个两个坐标距离小于人能跳的距离加入图中(用邻接矩阵存),点到岸边的距离小于人能跳得距离也加入图中,就成了最短路问题(这里用dijkst...

HDU1245:Saving James Bond(Floyd)

Problem Description This time let us consider the situation in the movie "Live and Let Die" in which...

【HDU】1245 Saving James Bond 最短路

传送门:【HDU】1245 Saving James Bond
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)