关闭

POJ 1861 Network【最小生成树】

标签: POJ 1861
141人阅读 评论(0) 收藏 举报
分类:

Network

Time Limit: 1000MS

 

Memory Limit: 30000K

Total Submissions: 15829

 

Accepted: 6255

 

Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6

1 2 1

1 3 1

1 4 2

2 3 1

3 4 1

2 4 1

Sample Output

1

4

1 2

1 3

2 3

3 4

Source

Northeastern Europe 2001, Northern Subregion

 

题目大意:给出n个节点,给出m条边,输出最小生成树中的最大边权值,然后输出一个可行生成树的解。


思路:直接克鲁斯卡尔算法水之。。。。


AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int f[100000];
int ans[100000][2];
struct zuobiao
{
    int x,y,w;
}a[121212];
int find(int x)
{
    return f[x] == x ? x : (f[x] = find(f[x]));
}
void merge(int a,int b)
{
    int A,B;
    A=find(a);
    B=find(b);
    if(A!=B)
    f[B]=A;
}
int cmp(zuobiao a,zuobiao b)
{
    return a.w<b.w;
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)f[i]=i;
    for(int i=0;i<m;i++)
    {
        scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);
    }
    sort(a,a+m,cmp);
    int output;
    int k=0;
    for(int i=0;i<m;i++)
    {
        if(find(a[i].x)!=find(a[i].y))
        {
            ans[k][0]=a[i].x;
            ans[k][1]=a[i].y;
            merge(a[i].x,a[i].y);
            k++;
            if(k==n-1)output=a[i].w;
        }
    }
    printf("%d\n%d\n",output,k);
    for(int i=0;i<k;i++)
    {
        printf("%d %d\n",ans[i][0],ans[i][1]);
    }
}





0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:494318次
    • 积分:23889
    • 等级:
    • 排名:第271名
    • 原创:1934篇
    • 转载:5篇
    • 译文:0篇
    • 评论:196条
    最新评论