Codeforces #369(Div.2) C.Coloring Trees【Dp】

原创 2016年08月30日 10:36:35

Coloring Trees

Description

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples

input
3 2 2
0 0 0
1 2
3 4
5 6
output
10
input
3 2 2
2 1 2
1 3
2 4
3 5
output
-1
input
3 2 2
2 0 0
1 3
2 4
3 5
output
5
input
3 2 3
2 1 2
1 3
2 4
3 5
output
0

Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is  - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.


题目大意:

给你一个长度为n的序列,其中序列值为0表示这个位子上没有颜色,需要我们去涂抹颜色,否则表示这个位子上已经有了颜色。

然后给你一个n*m的矩阵,Ai,j表示第i个位子上涂抹颜色j需要花费的价值。

定义一个序列美丽值:一个序列最少划分的连续区间e.g:1112---------->美丽值为2  2121----------->4美丽值为4;

然后问你全部序列都要上色的情况下,美丽值为k的最小花费。


思路:


1、定义dp【i】【j】【k】表示第i个位子上放置颜色j,包括第i个位子以内之前的美丽值为k的最小花费。


2、辣么不难推出状态转移方程:
if (color【i】==0)

dp【i】【j】【k】=min(dp【i】【j】【k】,dp【i-1】【j】【kk】)+cost【i】【j】;

dp【i】【j】【k】=min(dp【i】【j】【k】,dp【i-1】【l】【kk-1】)+cost【i】【j】;{ 1<=l<=m&&l!=j}

if(color【i】!=0)

dp【i】【j】【k】=min(dp【i】【j】【k】,dp【i-1】【j】【kk】);

dp【i】【j】【k】=min(dp【i】【j】【k】,dp【i-1】【l】【kk-1】);{ 1<=l<=m&&l!=j}


3、注意初始化范围,注意数据类型范围。


Ac代码:


#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
#define ll __int64
ll color[105];
ll cost[105][105];
ll dp[115][115][115];
int n,m,k;
void init()
{
    for(int i=0;i<=114;i++)
    {
        for(int j=0;j<=114;j++)
        {
            for(int kk=0;kk<=114;kk++)
            {
                dp[i][j][kk]=10000000000000000;
            }
        }
    }
}
int main()
{
    while(~scanf("%d%d%d",&n,&m,&k))
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",&color[i]);
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%I64d",&cost[i][j]);
            }
        }
        init();
        if(color[1]==0)
        {
            for(int i=1;i<=m;i++)
            {
                dp[1][i][1]=cost[1][i];
            }
        }
        else
        {
            for(int i=1;i<=m;i++)
            {
                dp[1][i][1]=10000000000000000;
            }
            dp[1][color[1]][1]=0;
        }
        for(int i=2;i<=n;i++)
        {
            if(color[i]!=0)
            {
                for(int j=1;j<=m;j++)
                {
                    for(int kk=1;kk<=i;kk++)
                    {
                        if(color[i]==j)
                        {
                            dp[i][color[i]][kk]=min(dp[i-1][j][kk],dp[i][color[i]][kk]);
                        }
                        else
                        {
                            dp[i][color[i]][kk]=min(dp[i-1][j][kk-1],dp[i][color[i]][kk]);
                        }
                    }
                }
                continue;
            }
            for(int j=1;j<=m;j++)
            {
                for(int kk=1;kk<=i;kk++)
                {
                    for(int l=1;l<=m;l++)
                    {
                        if(j==l)dp[i][j][kk]=min(dp[i][j][kk],dp[i-1][l][kk]);
                        else dp[i][j][kk]=min(dp[i][j][kk],dp[i-1][l][kk-1]);
                    }
                    dp[i][j][kk]+=cost[i][j];
                }
            }
        }
        ll output=10000000000000000;
        for(int i=1;i<=m;i++)
        {
            output=min(dp[n][i][k],output);
        }
        if(output==10000000000000000)
        {
            printf("-1\n");
        }
        else printf("%I64d\n",output);
    }
}




版权声明:0.0小白有写的不好不对的地方请指出~

CodeForces 369 div2 C Coloring Trees DP

C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan...

Codeforces Round #369 (Div. 2) -- C. Coloring Trees (三维DP)

大体题意: 给你n 个树,你要给这些树染色,  标号是0 表示这棵树还没有染色,标号不是0 表示这棵树已经染色 不需要再染,这片树的美丽程度是  连续相同颜色的数目! 告诉你指定美丽程度K,和  最多...

[Codeforces Round #369 (Div. 2) C. Coloring Trees] DP

[Codeforces Round #369 (Div. 2) C. Coloring Trees] DP题目链接:[Codeforces Round #369 (Div. 2) C. Colorin...

codeforces Round #369 (Div. 2) C. Coloring Trees (三维DP)

 C. Coloring Trees time limit per test 2 seconds memory limit per test ...

Codeforces Round #369 (Div. 2) C. Coloring Trees

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees gr...

codeforces round 369div2 C Coloring Trees

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees gro...

【Codeforces Round #369 (Div. 2)】Codeforces 711C Coloring Trees

动态规划
  • sdfzyhx
  • sdfzyhx
  • 2016年08月30日 14:00
  • 147

codeforces Round_369 C. Coloring Trees

C. Coloring Trees

CodeForces - 711C Coloring Trees 三维DP

题目大意输入nn,mm,kk,n表示有多少棵树,m表示有多少中颜色可以给树添加,k表示完美树的个数, 下面的n行表示给第ii棵树染色jj需要的花费,问把树染成k个完美树需要的最小花费。 第二行0表...

Codeforces711C-Coloring Trees(dp)

题目链接http://codeforces.com/contest/711/problem/C思路dp,状态还是比较好表示 **状态表示**d[i][j][k],前i个树都已经染色, 第i棵树颜色为...
  • Lzedo
  • Lzedo
  • 2016年09月23日 20:56
  • 96
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Codeforces #369(Div.2) C.Coloring Trees【Dp】
举报原因:
原因补充:

(最多只允许输入30个字)