关闭

hrbust 1699 矩阵游戏【枚举找规律】

标签: hrbust 1699哈理工oj 1699
146人阅读 评论(0) 收藏 举报
分类:

矩阵游戏
Time Limit: 1000 MS Memory Limit: 32768 K
Total Submit: 25(10 users) Total Accepted: 8(8 users) Rating:  Special Judge: No
Description

        DreamGriselda玩腻了硬币游戏,于是就找来小胖子一起玩矩阵游戏。

    在一个n*n01矩阵A里,Dream要求在这个矩阵中不能存在两个1相邻,Griselda要求在这个矩阵中每个元素必须满足

Aij = An - i - 1, j  Aij = Ain - j - 1.(下标从0开始)
    她们问小胖子:已知这个矩阵里面有几个1,问n最小是多少才能同时满足DreamGriselda的要求。

小胖子又苦恼了~你可以帮助他么?

Input

    本题有多组测试数据,每组测试数据有一行。

    每行输入一个整数x (1 ≤ x ≤ 100)

Output
    每组输出占一行,输出n的最小值。
Sample Input

4

9

Sample Output

3

5

Hint
Author
sunshine@hrbust

思路:


1、首先确定,一个偶数的正方形是不可能达到最优解的。


2、然后我们枚举每一个奇数的极限情况(这里枚举前几个):


1
n==1时 ans=1

1 0 1
0 1 0
1 0 1
n==2时,ans=3

n==3时,这个矩阵不能够放置成功,那么ans=5

n==4时,ans=3

n==5时,ans=3

1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
枚举可以发现n为6-13的时候,ans=7

1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
同样可以通过枚举发现,n为14-25的时候,ans=9.

那么发现这样一个规律:对应每一个奇数*奇数的矩阵,其可以放置的最大1的数量,能够作为一个分界点。n==3的时候是一个特殊例外,特判即可。


那么Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        if(n==1)printf("1\n");
        else if(n==2)printf("3\n");
        else if(n==3)printf("5\n");
        else if(n==4)printf("3\n");
        else if(n==5)printf("3\n");
        else if(n>=6&&n<=13)printf("5\n");
        else if(n>=14&&n<=25)printf("7\n");
        else if(n>=26&&n<=41)printf("9\n");
        else if(n>=42&&n<=61)printf("11\n");
        else if(n>=62&&n<=85)printf("13\n");
        else printf("15\n");
    }
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:484830次
    • 积分:23670
    • 等级:
    • 排名:第273名
    • 原创:1920篇
    • 转载:5篇
    • 译文:0篇
    • 评论:196条
    最新评论