Codeforces Round #291 (Div. 2) D. R2D2 and Droid Army RMQ问题 ST算法

原创 2015年07月06日 17:02:18
D. R2D2 and Droid Army
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

An army of n droids is lined up in one row. Each droid is described by m integers a1, a2, ..., am, where ai is the number of details of thei-th type in this droid's mechanism. R2-D2 wants to destroy the sequence of consecutive droids of maximum length. He has m weapons, the i-th weapon can affect all the droids in the army by destroying one detail of the i-th type (if the droid doesn't have details of this type, nothing happens to it).

A droid is considered to be destroyed when all of its details are destroyed. R2-D2 can make at most k shots. How many shots from the weapon of what type should R2-D2 make to destroy the sequence of consecutive droids of maximum length?

Input

The first line contains three integers n, m, k (1 ≤ n ≤ 1051 ≤ m ≤ 50 ≤ k ≤ 109) — the number of droids, the number of detail types and the number of available shots, respectively.

Next n lines follow describing the droids. Each line contains m integers a1, a2, ..., am (0 ≤ ai ≤ 108), where ai is the number of details of the i-th type for the respective robot.

Output

Print m space-separated integers, where the i-th number is the number of shots from the weapon of the i-th type that the robot should make to destroy the subsequence of consecutive droids of the maximum length.

If there are multiple optimal solutions, print any of them.

It is not necessary to make exactly k shots, the number of shots can be less.

Sample test(s)
input
5 2 4
4 0
1 2
2 1
0 2
1 3
output
2 2
input
3 2 4
1 2
1 3
2 2
output
1 3
Note

In the first test the second, third and fourth droids will be destroyed.

In the second test the first and second droids will be destroyed.

题意,给一排机器人,每个机器人有m个值,m个炮弹,每个炮弹发射一次,每个相应的值就减1,直到减为0结束,要求总发射次数不超过k次的情况下

连续为0的机器人个数最多,二分枚举长度,对每个长度计算i i+len之间的最大值,相加不超过k,就可以使这len排的数全部减成0,所以问题转化成了rm

q问题 ,用线段树 st算法等等,都可以总复杂度,n*log(n);

#define N 100005
#define MOD 1000000000000000007
int n,m,k;
int maxsum[N][21][6];
void RMQ(int num)
{
    for(int mm = 0;mm < m;mm++){
        for(int j = 1; j < 20; ++j)
            for(int i = 1; i <= num; ++i)
                if(i + (1 << j) - 1 <= num)
                {
                    maxsum[i][j][mm] = max(maxsum[i][j - 1][mm] , maxsum[i + (1 << (j - 1))][j - 1][mm] );
                }
    }
}
int getRMQ(int i,int j,int m){
    int k=log2( j - i + 1);
    return max(maxsum[i][k][m], maxsum[j-(1<<k)+1][k][m]);
}
int check(int len){
    for(int i=1;i+len-1<=n;i++){
        int ans = 0;
        FJ(m){
           ans +=getRMQ(i,i+len-1,j);
        }
        if(ans <= k)
        return i;
    }
    return -1;
}
void outPut(int start,int len){
    FJ(m){
        if(j)
            printf(" %d",len==0?0:getRMQ(start,start+len-1,j));
        else
            printf("%d",len==0?0:getRMQ(start,start+len-1,j));
    }
    printf("\n");
}
int main()
{
    S2(n,m);
    {
        S(k);
        FI(n){
            FJ(m){
                S(maxsum[i+1][0][j]);
            }
        }
        RMQ(n);
        int s = 1,e = n,mid;
        while(s<e-1){
            mid = (s+e)/2;
            if(check(mid) != -1)
                s = mid;
            else
                e = mid;
        }
        int t = 0;
        if((t = check(e))!= -1){
            outPut(t,e);
        }
        else if((t = check(s))!= -1){
            outPut(t,s);
        }
        else {
            outPut(t,0);
        }
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

【Codeforces Round 375 (Div 2) E】【欧拉回路Fleury算法 或网络流】One-Way Reform 每条边定向使得最多的点满足入度=出度

E. One-Way Reform time limit per test 2 seconds memory limit per test 256 megabytes ...
  • snowy_smile
  • snowy_smile
  • 2016年10月04日 10:20
  • 739

Codeforces Round #406 (Div. 2):C. Berzerk(记忆化搜索解决博弈问题)

C. Berzerk time limit per test 4 seconds memory limit per test 256 megabytes input standard in...
  • Jaihk662
  • Jaihk662
  • 2017年03月24日 15:23
  • 808

HDU3183(RMQ问题,ST算法)

题目:A Magic Lamp   题意: 对于一个序列A[1...N],一共N个数,除去M个数使剩下的数组成的整数最小。 也就是说在A[1...N]中顺次选取N-M个数,使值最小。 本题很有技巧...
  • ACdreamers
  • ACdreamers
  • 2013年03月19日 16:29
  • 2979

理解RMQ问题和ST算法的原理

1.RMQ问题     RMQ (Range Minimum/Maximum Query):对于长度为n的数组A,回答若干询问RMQ(A,i,j)(i,jRMQ问题是指求区间最值的问题。最简单的方法...
  • aitangyong
  • aitangyong
  • 2014年05月25日 13:16
  • 1146

RMQ--ST表算法理解

RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j ST算法(Sparse Tabl...
  • qq1169091731
  • qq1169091731
  • 2016年07月21日 11:59
  • 1111

RMQ(st在线算法模板)

#include #include #include using namespace std; #define M 100010 #define MAXN 500 #define MAXM 500 ...
  • mengxingyuanlove
  • mengxingyuanlove
  • 2015年08月18日 21:13
  • 651

针对RMQ问题的ST算法

RMQ问题,即求区间最大最小值的问题:对于长度为N的数列,询问若干次RMQ(A,I,J)(I   我们可以采取朴素的直接搜的算法,如果数据非常大的话,直接搜就会爆时间爆的很惨。然后我们可以采取二...
  • fqh1379
  • fqh1379
  • 2015年02月08日 08:43
  • 320

RMQ问题之ST算法

原文:http://blog.csdn.net/sdj222555/article/details/7875575 ST算法的基本原理百度一下就可以知道   RMQ(Ran...
  • witnessai1
  • witnessai1
  • 2017年03月21日 23:21
  • 102

RMQ问题ST算法

/* RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题。当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(...
  • lgh1992314
  • lgh1992314
  • 2013年05月31日 14:15
  • 787

RMQ问题之ST算法

ST算法的基本原理百度一下就可以知道   RMQ(Range Minimum/Maximum Query)问题是求区间最值问题。可以写一个线段树,但是预处理和查询的复杂度都是O(logn)。这里...
  • ascvsderf
  • ascvsderf
  • 2016年04月25日 09:35
  • 138
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Codeforces Round #291 (Div. 2) D. R2D2 and Droid Army RMQ问题 ST算法
举报原因:
原因补充:

(最多只允许输入30个字)