Web 文本挖掘(TextMining)技术

本文深入探讨了Web文本挖掘的各个方面,包括信息检索技术、文档建模(如向量空间模型)、特征评价函数(如信息增益和互信息)、特征集缩减(如潜在语义标引)以及词性标注技术。重点讲解了词性标注的统计方法(如CLAWS和VOLSUNGA算法)及其局限性,以及基于规则的标注方法。此外,还介绍了文本分类、聚类和自动文摘的基础知识,展示了文本挖掘在处理大量Web文档时的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文本挖掘的起源

  文本数据库(web文档数据)

  半结构化数据(semistructure data)

  信息检索技术(information retrieval)

  Web文本挖掘的过程

  Web文本挖掘的一般处理过程
  
  特征的建立

  特征集的缩减

  学习与知识模式的提取

  知识模式

  模式质量的评价

  文档集

  文本特征的建立

  定义:文本特征指的是关于文本的元数据。

  分类:

    描述性特征:文本的名称、日期、大小、类型等。

    语义性特征:文本的作者、标题、机构、内容等。

  表示(文档建模):

  采用向量空间模型(VSM)(矩阵)

  特征向量

  (其中ti为词条项,wi(d)为ti在d中的权值)

  文本特征评价函数的数学表示

  信息增益(information gain)

  期望交叉熵(expected cross entropy)
  
  互信息(mutual information)

  F是对应于单词W的特征;

  P(W)为单词W出现的概率;

  P(Ci)为第i类值的出现概率;

  p(Ci|W)为单词W出现时属于第i类的条件概率。
  
  文本特征评价函数的数学表示(续)

  文本证据权(the weight of evidence for text)

  词频(word frequency)

  P(W)为单词W出现的概率;

  P(Ci)为第i类值的出现概率;

  p(Ci|W)为单词W出现时属于第i类的条件概率;

  TF(W)为单词在文档集中出现的次数。

  文档建模

  词频矩阵

  行对应关键词t,列对应文档d向量将每一个文档视为空间向量v向量值反映单词t与文档d的关联度 表示文档词频的词频矩阵


   文档相似度计算


余弦计算法(cosine measure)

余弦相似度定义: "略"
缺点:文档“无限”,导致矩阵增大,计算量增加


特征集的缩减


潜在语义标引(latent semantic indexing)方法利用矩阵理论中的“奇异值分解(singular value decomposition,SVD)”技术,将词频矩阵转化为奇异矩阵(K×K)

潜在语义标引方法基本步骤:

1.建立词频矩阵,frequency matrix

2.计算frequency matrix的奇异值分解

分解frequency matrix成3个矩阵U,S,V。U和V是正交矩阵(UTU=I),S是奇异值的对角矩阵(K×K)

3.对于每一个文档 d,用排除了SVD中消除后的词的新的向量替换原有的向量

4.保存所有向量集合,用高级多维索引技术为其创建索引

5.用转换后的文档向量进行相似度计算


其他文本检索标引技术

倒排索引(inverted index)

一种索引结构,包含两个哈希表索引表或两个B+树索引表

找出与给定词集相关的所有文档

找出与指定文档相关的所有词

易实现,但不能处理同义词和多义词问题,posting_list非常长,存储开销大

签名文件(signature file)

doc_1, ... , doc_n

Term_n

tn_1, ... ,tn_n

Doc_n














doc_1, ... , doc_ j


Term_2


t2_1, ... ,t2_n


Doc_2


doc_1, ... , doc_i


Term_1


t1_1, ... ,t1_n


Doc_1


posting_list

term_ID

posting_list

doc_ID

词表(term_table)

文档表(document_table)

词性标注

定义:将句子中兼类词的词性根据上下文唯一地确定下来。

兼类词分类:

同型异性异义兼类词:例如:领导(动词/名词)

同型异性同义兼类词:例如:小时(量词/名词)

异型同性同义兼类词:例如:电脑,计算机

自动词性标注就是用计算机来自动地给文本中的词标注词类。

在英语、汉语等自然语言中,都存在着大量的词的兼类现象,这给文本的自动词性标注带来了很大的困难。因此,如何排除词类歧义,是文本自动词性标注研究的关键问题。

标注技术路线:基于概率统计和基于规则

自动词类标注

早在60年代,国外学者就开始研究英语文本的自动词类标注问题,提出了一些消除兼类词歧义的方法,建立了一些自动词性标注系统。

1971年,美国布朗大学的格林(Greene)和鲁宾(Rubin)建立了TAGGIT系
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值