关闭

Codeforces Round #331 (Div. 2) C. Wilbur and Points

标签: codeforces
251人阅读 评论(0) 收藏 举报
分类:

time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Wilbur is playing with a set of n points on the coordinate plane. All points have non-negative integer coordinates. Moreover, if some point (x, y) belongs to the set, then all points (x’, y’), such that 0 ≤ x’ ≤ x and 0 ≤ y’ ≤ y also belong to this set.

Now Wilbur wants to number the points in the set he has, that is assign them distinct integer numbers from 1 to n. In order to make the numbering aesthetically pleasing, Wilbur imposes the condition that if some point (x, y) gets number i, then all (x’,y’) from the set, such that x’ ≥ x and y’ ≥ y must be assigned a number not less than i. For example, for a set of four points (0, 0), (0, 1), (1, 0) and (1, 1), there are two aesthetically pleasing numberings. One is 1, 2, 3, 4 and another one is 1, 3, 2, 4.

Wilbur’s friend comes along and challenges Wilbur. For any point he defines it’s special value as s(x, y) = y - x. Now he gives Wilbur some w1, w2,…, wn, and asks him to find an aesthetically pleasing numbering of the points in the set, such that the point that gets number i has it’s special value equal to wi, that is s(xi, yi) = yi - xi = wi.

Now Wilbur asks you to help him with this challenge.

Input
The first line of the input consists of a single integer n (1 ≤ n ≤ 100 000) — the number of points in the set Wilbur is playing with.

Next follow n lines with points descriptions. Each line contains two integers x and y (0 ≤ x, y ≤ 100 000), that give one point in Wilbur’s set. It’s guaranteed that all points are distinct. Also, it is guaranteed that if some point (x, y) is present in the input, then all points (x’, y’), such that 0 ≤ x’ ≤ x and 0 ≤ y’ ≤ y, are also present in the input.

The last line of the input contains n integers. The i-th of them is wi ( - 100 000 ≤ wi ≤ 100 000) — the required special value of the point that gets number i in any aesthetically pleasing numbering.

Output
If there exists an aesthetically pleasant numbering of points in the set, such that s(xi, yi) = yi - xi = wi, then print “YES” on the first line of the output. Otherwise, print “NO”.

If a solution exists, proceed output with n lines. On the i-th of these lines print the point of the set that gets number i. If there are multiple solutions, print any of them.

Sample test(s)
input
5
2 0
0 0
1 0
1 1
0 1
0 -1 -2 1 0
output
YES
0 0
1 0
2 0
0 1
1 1
input
3
1 0
0 0
2 0
0 1 2
output
NO
Note
In the first sample, point (2, 0) gets number 3, point (0, 0) gets number one, point (1, 0) gets number 2, point (1, 1) gets number 5 and point (0, 1) gets number 4. One can easily check that this numbering is aesthetically pleasing and yi - xi = wi.

In the second sample, the special values of the points in the set are 0,  - 1, and  - 2 while the sequence that the friend gives to Wilbur is 0, 1, 2. Therefore, the answer does not exist.

这道题的题意真的好难搞懂,意思就是说,给你n个点,每个点都有一个美值,美值是指那个点的y坐标减去x坐标得出来的值,最后再输入一个长为n的数组,这个数组对应每个点的美值。如果有个点的美值没有对应点,输出NO,另外,输出要按照最后给出的那个数组的顺序来输出点的坐标,同时还有一个条件,那就是,如果有 x<=x 并且 y<=y,那么点(x,y)必须要在点(x,y)的前面,如果不符合这个条件,输出NO,如果以上条件都符合,输出YES,并且按照最后的那个数组的顺序输出对应的点。

首先,要把每个值的美值求出来,然后按照美值的大小排序,如果美值相同,就按照x和y的大小排序,最后的数组也要进行排序,如果相同,就按照位置大小排序,然后将他们一一对应,如果有一个点没有对应的值,输出NO,反之,记录下点的位置和美值的关系,还有位置关系。再按照坐标大小排序,检查有没有不符合最后一个条件的点,如果有,输出NO,反之,输出YES,再按照最后一个数组的顺序输出其对应的点。

P.S. 这道题,不能用两个嵌套式的for循环,否则超时。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<string>
using namespace std;
struct node
{
    int x;
    int y;
    int z;
    int f;
    int s;
}point[100010];
struct tnode
{
    int x;
    int y;
    int z;
}p[100010];
bool cmp(tnode a,tnode b)
{
    if(a.x==b.x)  return a.y<b.y;
    else  return a.x<b.x;
}
bool cmp1(node a,node b)
{
    if(a.x==b.x)  return a.y<b.y;
    else  return a.x<b.x;
}
bool cmp2(node a,node b)
{
    return a.s<b.s;
}
bool cmp3(node a,node b)
{
    if(a.z==b.z)  return a.s<b.s;
    else  return a.z<b.z;
}
bool cmp4(tnode a,tnode b)
{
    if(a.z==b.z)
    {
        if(a.x==b.x)  return a.y<b.y;
        else  return a.x<b.x;
    }
    else  return a.z<b.z;
}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++)  
    {
        scanf("%d %d",&p[i].x,&p[i].y);
        p[i].z=p[i].y-p[i].x;
    }
    for(int i=0;i<n;i++)  
    {
        scanf("%d",&point[i].z);
        point[i].s=i;
    }
    sort(p,p+n,cmp4);
    sort(point,point+n,cmp3);
    int flag=0; 
    for(int i=0;i<n;i++)
    {
        if(point[i].z==p[i].z&&!point[i].f)
        {
            point[i].x=p[i].x;
            point[i].y=p[i].y;
            point[i].f=1;
        }
        else
        {
            flag=1;
            break;
        }
    }
    int kk=0;
    sort(point,point+n,cmp1);
    int ans=point[0].x;
    int nut=point[0].y;
    int seat=point[0].s;
    for(int i=1;i<n;i++)
    {
        if(ans<=point[i].x&&nut<=point[i].y)
        {
            if(seat>point[i].s)
            {
                kk=1;
                break;
            }
            else
            {
                ans=point[i].x;
                nut=point[i].y;
                seat=point[i].s;
            }
        }
    }
    sort(point,point+n,cmp2);
    if(flag||kk)  printf("NO\n");
    else
    {
        printf("YES\n");
        for(int i=0;i<n;i++)  printf("%d %d\n",point[i].x,point[i].y);
    } 

    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:9614次
    • 积分:616
    • 等级:
    • 排名:千里之外
    • 原创:55篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类