关闭

8.28 考试第二题(DP + 矩阵快速幂)

219人阅读 评论(0) 收藏 举报
分类:
2.方块游戏(block.c/cpp/pas)(标准题目见段大神的---> http://blog.csdn.net/dy0607/article/details/52347717)
【问题描述】
到了游乐场后,ZQ 为了感谢你,承诺免费请你打俄罗斯方块游戏,在经过你细致的观
察后,发现这个游戏只有如下两种方块:
当然,这两种形状的方块上的每一小块是一样大的。
然而,好动脑筋的 ZQ 想知道在宽为 n,高为 2 的界面内,有多少种消除方法。
例如,当 n=2 时,只有这么 5 种消除方法:
于是作为 ZQ 的伙伴,请你计算出消除方块的方案数 s。
【输入格式】
输入文件 block.in 第一行一个正整数 n。
【输出格式】
输出文件 block.out 一行一个整数 s,所求的方案数对 1000000007 取模后的结果。
【样例输入】
2
【样例输出】
5
【数据规模】
对于 30%的数据,保证 0≤n≤10000。
对于 50%的数据,保证 0≤n≤100000000。

显然本题很容易看出递推式,f[x] =  f[x-1] + 4*f[x-2] + 2*f[x-3]


但是呢,即便用滚动数组,我们也无法完成10^18数据规模的计算。。。

显然。。。我们用矩阵快速幂进行优化

f[x-1] f[x-2] f[x-3]   ---->    f[x]   f[x-1]   f[x-2]

  0         0         0                   0         0        0

  0         0         0                   0         0        0

发现:要用f[x-3], f[x-2], f[x-1]递推f[x], 我们把幂矩阵设成这个样子:

1 1 0

4 0 1

2 0 0

第1列的三个数即为要乘的数字,用来递推出f[x]的,另外的两个1,是用来平移f[x-1]与f[x-2]到前面的,可以自己乘一下试一试。。。


矩阵快速幂我还要多加练习,今天知道是用它却不知道怎么写,

代码上!


#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>

using namespace std;

#define MOD 1000000007
#define LL unsigned long long

struct Matrix{
	LL m[3][3];
	
	Matrix(int d){
		memset(m, 0, sizeof(m));
		if(d == 1){
			m[0][0] = m[0][1] = m[1][2] = 1;
			m[1][0] = 4; m[2][0] = 2;
		}
		if(d == 2){
			m[0][0] = m[1][1] = m[2][2] = 1;
		}
	}
	
	Matrix operator *(const Matrix &x)const{
		Matrix ret(3);
		for(int i = 0; i < 3; i++)
		  for(int j = 0; j < 3; j++)
		    for(int k = 0; k < 3; k++) ret.m[i][j] = (ret.m[i][j] + (m[i][k] * x.m[k][j]) % MOD) % MOD;
		
		return ret;
	}
};

Matrix power(Matrix a, long long num){
	Matrix ret(2);
	if(num == 1) return a;
	
	while(num){
		if(num & 1) ret = ret * a;
		a = a*a;
		num >>= 1;
	}
	
	return ret;
}

int main(){
	freopen("block.in", "r", stdin);
	freopen("block.out", "w", stdout);
	
	long long n;
	scanf("%lld", &n);
	
	if(n == 0 || n == 1){
		printf("1\n");
		return 0;
	}
	if(n == 2){
		printf("5\n");
		return 0;
	}
	
	Matrix g = 1;
	Matrix ans = power(g, n-2);
	
	LL P = ans.m[0][0]*5 + ans.m[1][0] + ans.m[2][0];
	printf("%llu\n", P % MOD);
	
	return 0;
}

更多解释见段大神和松AK的矩阵快速幂加递推。。。

(松AK: blog.csdn.net/frods)

(段大神: blog.csdn.net/dy0607)



I believe I can fly!!!


2
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:9005次
    • 积分:875
    • 等级:
    • 排名:千里之外
    • 原创:74篇
    • 转载:0篇
    • 译文:0篇
    • 评论:19条
    另一个我
    Free组合~~友链O(∩_∩)O
    文章分类