机器学习笔记_数学基础_5-矩阵理论_续1_QR分解

原创 2015年11月19日 14:56:58

矩阵的QR分解

  • 实非奇异矩阵(满秩矩阵)A能够分解为正交矩阵Q和实非奇异上三角矩阵R的乘积
    证明:令A的n个列向量a1,,an, 因为A非奇异,=>列向量线性无关
    则列向量的施密特正交化可得,n个标准的正交列向量 q1,,qN

证明:
令 A的列向量为ai => 对ai正交化得

b1b2bn=a1=a2k21b1=ankn,n1bn1kn1b1

其中kij=(ai,bj)(bj,bJ)

=>=>

a1a2an=b1=k21b1+b2=kn1b1+kn2b2++kn,n1bn1+bn

=> (a1,,an)=(b1,,bn)C

其中 C=1k211kn1kn21

(b1,b2,,bn)=> Qi=1|bi|bi

=> (a1,a2,,an)=(b1,,cn)C=(q1,,qn)|b1||b2||bn|C

=> Q=(q1,,qn)

=> R=diag(|b1|,,|bn|)C


C=1k211kn1kn21


例题: 求矩阵 A=121212121的QR分解

解:

a1=(1,2,1)T,a2=(2,1,2)T,a3=(2,2,1)T => 正交化可得

b1=a1=(1,2,1)T;b2=a2b1=(1,1,1)T;b3=a31376=(12,0,12)T

=> 构造矩阵Q=> Q=16131226130161312

=> R=Q=631211176131

版权声明:本文为博主原创文章,未经博主允许不得转载。

为什么要重视数学?机器学习需要哪些数学基础?

原文  http://www.jiqizhixin.com/article/2354 本文标签:   机器学习 TensorFlow fastNeuralStyle MOOC REST   服务器...
  • littlesmallless
  • littlesmallless
  • 2017年03月01日 22:23
  • 669

机器学习笔记——基础数学篇

机器学习里面包括很多数学内容。高中及大学的数学知识都还给老师了。最近跟着视频学习中,发现总结的很好。下面将我的学习笔记记录下来。如有雷同,那可能我们看的是同一视频。笔记内容仅代表我个人的理解,如有错误...
  • wang___bing
  • wang___bing
  • 2017年02月18日 18:51
  • 71

机器学习中的矩阵分解方法

基于郭栋老师的教学PPT,配上相关paper和资料,做到对矩阵分解技术有个大致了解。 一个假设:数据由有限的潜在因子决定,数据样本的观测值是潜在因子的一个映射。 矩阵分解发展历史: 经典的...
  • u011081315
  • u011081315
  • 2017年07月28日 13:50
  • 267

七月算法机器学习笔记2--机器学习中的数学之矩阵分析与应用

这套笔记是跟着七月算法四月机器学习班的学习而记录的,主要记一下我再学习机器学习的时候一些概念比较模糊的地方,具体课程参考七月算法官网: http://www.julyedu.com/  矩阵分析与...
  • thystar
  • thystar
  • 2016年10月29日 14:51
  • 1041

机器学习经典书籍--入门书-入门--深入--数学基础

转之    http://suanfazu.com/t/topic/15 前面有一篇机器学习经典论文/survey合集209。本文总结了机器学习的经典书籍,包括数学基础和算法理论的书...
  • pandav5
  • pandav5
  • 2016年03月29日 10:24
  • 5127

深度学习--基于深度矩阵分解的属性表征学习

基于深度矩阵分解的属性表征学习 原文地址:http://blog.csdn.NET/hjimce/article/details/50876956 作者:hjimce 一、相关概...
  • txwh0820
  • txwh0820
  • 2016年10月22日 10:47
  • 634

【机器学习基础】理解为什么机器可以学习3——VC理论

上一小节中,“理解为什么机器可以学习——Hoeffding不等式”中,我们介绍了有限假设空间中的概率边界。在这篇文章中,我们将推广至无限假设空间中,进而引入VC理论。...
  • JasonDing1354
  • JasonDing1354
  • 2014年12月11日 20:23
  • 2686

矩阵学习笔记

先给出一些定义: 矩阵的行列式 对于一个方阵(n*n的矩阵)A,有行列式运算记为 det A。 行列式可以看做有向面积或体积的慨念在一般的欧几里得空间中的推广。 我们这里提出行列式的目的是有为...
  • zjjzhaohang
  • zjjzhaohang
  • 2017年03月31日 21:42
  • 457

机器学习笔记_数学基础_5-矩阵理论

矩阵分解 Guass消去: 高斯消去可以充分进行的充分必要条件是A的前n-1个顺序主子式都不为零 △k≠0,k=1,2,,⋯,n−1\bigtriangleup_k \neq 0, k=1,2,...
  • mijian1207mijian
  • mijian1207mijian
  • 2015年11月18日 23:44
  • 689

矩阵学习笔记1

矩阵论的重要性就不用说了,但是,没有认真地学习一次,翻来翻去就是不能学好。三维重建中提到各种各样的空间,如欧式空间,仿射空间,各种投影,希伯特空间等这些概念让我特别糊涂!怎么办才好?不如写几篇博客梳理...
  • Wanggcong
  • Wanggcong
  • 2015年01月24日 11:57
  • 2099
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习笔记_数学基础_5-矩阵理论_续1_QR分解
举报原因:
原因补充:

(最多只允许输入30个字)