# leetcode_c++：Unique Paths II（063）

## 题目

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.

Note: m and n will be at most 100.

### 算法

DP

* 如果是障碍物，则res[i][j]=0
* 否则，res[i][j]=res[i-1][j]+res[i][j-1]

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> >& obstacleGrid) {

if(obstacleGrid.empty() ||obstacleGrid[0].empty())
return 0;

int m=obstacleGrid.size();
int n=obstacleGrid[0].size();

int dp[m][n ];

// 对dp初始化，需要更加obstacGrid的值来确定
dp[0][0]=(obstacleGrid[0][0]==0?1:0);

//我们需要注意m*1和1*n的初始化

for(int i=1;i<m;i++)
dp[i][0]=((dp[i-1][0]==1 && obstacleGrid[i][0]==0)?1:0);
for(int j=1;j<n;j++)
dp[0][j]=((dp[0][j-1]==1 && obstacleGrid[0][j]==0)?1:0);

for(int i=1;i<m;i++)
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]==1)
dp[i][j]=0;
else
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}

return dp[m-1][n-1];

}
};

• 本文已收录于以下专栏：

举报原因： 您举报文章：leetcode_c++：Unique Paths II（063） 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)