关闭

leetcode_c++:Unique Paths II(063)

125人阅读 评论(0) 收藏 举报
分类:

题目

Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.

Note: m and n will be at most 100.


算法

DP
复杂度:O(nm)

同Unique Paths,只是多个障碍物
* 如果是障碍物,则res[i][j]=0
* 否则,res[i][j]=res[i-1][j]+res[i][j-1]


class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int> >& obstacleGrid) {

        if(obstacleGrid.empty() ||obstacleGrid[0].empty())
            return 0;

        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();

        int dp[m][n ];

        // 对dp初始化,需要更加obstacGrid的值来确定
        dp[0][0]=(obstacleGrid[0][0]==0?1:0);

        //我们需要注意m*1和1*n的初始化

        for(int i=1;i<m;i++)
            dp[i][0]=((dp[i-1][0]==1 && obstacleGrid[i][0]==0)?1:0);
        for(int j=1;j<n;j++)
            dp[0][j]=((dp[0][j-1]==1 && obstacleGrid[0][j]==0)?1:0);

        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==1)
                    dp[i][j]=0;
                else
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }

        return dp[m-1][n-1];

    }
};
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:124726次
    • 积分:6902
    • 等级:
    • 排名:第3535名
    • 原创:589篇
    • 转载:2篇
    • 译文:0篇
    • 评论:2条
    最新评论