leetcode_c++:Divide and Conquer: Different Ways to Add Parentheses(241)

原创 2016年08月28日 15:39:05

Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +, - and *.

Example 1
Input: “2-1-1”.

((2-1)-1) = 0
(2-(1-1)) = 2
Output: [0, 2]

Example 2
Input: “2*3-4*5”

(2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10
Output: [-34, -14, -10, -10, 10]


#include <bits/stdc++.h>

using namespace std;
const int N = 110;

class Solution {
private:
    vector<int> dp[N][N];
    vector<int> helper(string& input, int l, int r) {
        if (!dp[l][r].empty())
            return dp[l][r];
        vector<int> &ans = dp[l][r];
        bool isNum = true;
        int num = 0;
        for (int i = l; i < r; ++i) {
            if (!isdigit(input[i])) {
                isNum = false;
                vector<int> L = helper(input, l, i), R = helper(input, i + 1, r);
                for (auto l : L)
                    for (auto r : R) {
                        if (input[i] == '+') ans.push_back(l + r);
                        else if (input[i] == '-') ans.push_back(l - r);
                        else ans.push_back(l * r);
                    }
            }
            if (isNum) 
                num = num * 10 + (input[i] - '0');
        }
        if (isNum)
            ans.push_back(num);
        return ans;
    }
public:
    vector<int> diffWaysToCompute(string input) {
        return helper(input, 0, input.length());
    }
};

int main() {
    Solution s;
    vector<int> ans;
    // ans = s.diffWaysToCompute("0+1");
    // for (auto i : ans) cout << i << ' ';
    // cout << endl;
    // ans = s.diffWaysToCompute("2-1-1");
    // for (auto i : ans) cout << i << ' ';
    // cout << endl;
    ans = s.diffWaysToCompute("2*3-4*5");
    for (auto i : ans) cout << i << ' ';
    cout << endl;
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

算法导论学习笔记之二--分而治之(divide-and-conquer approach)

如果一个问题当它的规模缩小的时候,问题性质不变,并且问题的规模最小的时候简单可解,就可以采用divide-and-conquer 方法。 divide-and-conquer 分以下4步进行: 直接...
  • institute
  • institute
  • 2014年03月02日 17:21
  • 2799

分治算法(divide and conquer)

0) 引论 正如名字divide and conquer所言,分治算法分为两步,一步是divide,一步是conquer。 Divide:Smaller Problems are solved rec...
  • changyuanchn
  • changyuanchn
  • 2013年12月09日 12:07
  • 4815

机器学习-第二周-第一次作业 numpy基础

Python Basics with Numpy (optional assignment) Welcome to your first assignment. This exercise give...
  • liqing19
  • liqing19
  • 2017年12月01日 15:41
  • 170

算法入门(1)——分治算法(Divide and Conquer)

一、基本概念在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解...
  • picway
  • picway
  • 2016年10月06日 21:29
  • 282

【LeetCode-面试算法经典-Java实现】【022-Generate Parentheses(生成括号)】

【022-Generate Parentheses(生成括号)】【LeetCode-面试算法经典-Java实现】【所有题目目录索引】原题  Given n pairs of parentheses, ...
  • DERRANTCM
  • DERRANTCM
  • 2015年07月23日 07:52
  • 2388

divide的使用

Performs per-element division of two arrays or a scalar by an array. C++: void divide(InputArra...
  • lien0906
  • lien0906
  • 2015年01月13日 10:28
  • 1456

矩阵十大经典题目之八-hdu-2157-How many ways??

题目大意:给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值 把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=...
  • rowanhaoa
  • rowanhaoa
  • 2014年03月13日 01:00
  • 2596

漫谈算法(四)分治算法 Divide and Conquer Algorithm

先看一段来自wikipedia的定义:http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm Divide and conquer (...
  • GrazyThinking
  • GrazyThinking
  • 2014年10月22日 16:37
  • 530

git 问题之解决

错误
  • wwq444968579
  • wwq444968579
  • 2014年10月15日 16:13
  • 5390

BigDecimal divide方法结果为无限小数问题

参考:http://mengxiaozhe.iteye.com/blog/763552 10/3=3.3333333333333333..............  Java代码 ...
  • jueshengtianya
  • jueshengtianya
  • 2014年03月14日 21:17
  • 1572
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:leetcode_c++:Divide and Conquer: Different Ways to Add Parentheses(241)
举报原因:
原因补充:

(最多只允许输入30个字)