POJ 1006-Biorhythms-生理周期峰值(中国剩余问题)

原创 2015年01月27日 21:58:23
Biorhythms
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 129233   Accepted: 41094

Description

Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier. 
Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak. 

Input

You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1.

Output

For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form: 

Case 1: the next triple peak occurs in 1234 days. 

Use the plural form ``days'' even if the answer is 1.

Sample Input

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

Sample Output

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.

Source


题目意思:

解同余方程组:
X≡p(mod 23)
X≡e(mod 28)
X≡i(mod 33)

解题思路:

模板题,中国剩余问题

#include <iostream>≡≡
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#define INF 0xfffffff
int a[10],m[10],D,M;
using namespace std;

void extgcd(int a,int b,int &d,int &x,int &y)
{
    if (b==0)
    {
        x=1;
        y=0;
        return ;
    }
    extgcd(b,a%b,d,x,y);
    int t = x;
    x = y;
    y = t - a/b * y;
}

int china(int r)
{
    M=1;
    int i,Mi,x0,y0,ans=0,d;
    for(i=0; i<r; ++i)
        M*=m[i];
    for(i=0; i<r; ++i)
    {
        Mi=M/m[i];
        extgcd(Mi,m[i],d,x0,y0);
        ans=(ans+Mi*x0*a[i])%M;
    }
    if(ans<0) ans+=M;
    return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n=3,ca=0;
    m[0]=23,m[1]=28,m[2]=33;
    while(cin>>a[0]&&a[0]!=-1)
    {
        for(int i=1; i<n; ++i)
            cin>>a[i];
        cin>>D;
        int ans=china(n);
        while(ans<=D)
            ans+=M;
        cout<<"Case "<<++ca<<": the next triple peak occurs in "<<ans-D<<" days."<<endl;
    }
    return 0;
}
/**
0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1
**/

#include <iostream>
using namespace std;
int main()
{
    int p,e,i,d;
    int x;
    int index = 1;
    while((cin>>p>>e>>i>>d)&&(p!=-1)&&(e!=-1)&&(i!=-1)&&(d!=-1))
    {
        p%=23;
        e%=28;
        i%=33;
        x=i;
        while(!((x-p)%23==0 && (x-e)%28==0))
        {
            x += 33;
        }
        x -= d;
        if(x<=0) x += 21252;
        cout<<"Case "<<index<<": the next triple peak occurs in "<<x<<" days."<<endl;
        index++;
    }
    return 0;
}


知识点总结:

中国剩余定理

p+23a=x;

e+28b=x;

i+33c=x;

其实就是求能被23除余p,能被28除余e,能被33除余i的最小的数。

这样我们可以用中国剩余定理(自行百度):

假设:t1能被28、33整除,能被23除余1;

            t2能被23、33整除,能被28除余1;

            t3能被23、28整除,能被33除余1;

那么:t1*p能被28、33整除,能被23除余p;

            t2*e能被23、33整除,能被28除余e;

            t3*i能被23、28整除,能被33除余i;

所以,t1*p+t2*e+t3*i就是一个能被23除余p,能被28除余e,能被33除余i的数,但是它不一定是最小的,需要减掉n个23、28、33的最小公倍数,这样就能得到x。但是我们要计算的是给定日期d到x的天数,就需要x - d > 0。

学习心得:

第一种是逐步满足法,方法麻烦一点,但适合所有这类题目。
第二种是最小共倍法,方法简单,但只适合特殊类型的题目。


版权声明:本文为博主原创文章,未经博主允许不得转载,转载请注明出处。

poj1006 生理周期(中国剩余定理)

生理周期 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122157   Accepted: 38518 ...
  • d_x_d
  • d_x_d
  • 2015年09月15日 14:37
  • 1618

中国剩余定理算法详解 + POJ 1006 Biorhythms 生理周期

此题相当于解方程组 x+d≡p(mod 23) x+d≡e(mod 28) x+d≡i(mod 33) 由于23,28,33两两互素,所以M=23*28*33=21252,M1=924,M2=759,...
  • synapse7
  • synapse7
  • 2013年08月13日 13:07
  • 5959

poj 1006 生理周期 中国剩余定理

生理周期 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103623   Accepte...
  • jyysc2010
  • jyysc2010
  • 2013年08月17日 09:41
  • 1054

中国剩余定理算法详解 + POJ 1006 Biorhythms 生理周期

此题相当于解方程组 x+d≡p(mod 23) x+d≡e(mod 28) x+d≡i(mod 33) 由于23,28,33两两互素,所以M=23*28*33=21252,M1=924,M2=759,...
  • synapse7
  • synapse7
  • 2013年08月13日 13:07
  • 5959

POJ1006 Biorhythms(生理周期,中国剩余定理详述)

Description   人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,人会在相应的方面表现出色。例如,智力周期的...
  • SimonCoder
  • SimonCoder
  • 2015年11月16日 08:56
  • 1147

poj 1006 生理周期 【中国剩余定理】

生理周期 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 117999 Accepted: 37040 ...
  • u014427196
  • u014427196
  • 2015年03月27日 16:31
  • 668

POJ_P1006 生理周期(中国剩余定理)

POJ传送门 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 124912 Accepted: 3945...
  • qq_18455665
  • qq_18455665
  • 2016年02月15日 15:29
  • 229

poj1006 生理周期(中国剩余定理)

生理周期 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122157   Accepted: 38518 ...
  • d_x_d
  • d_x_d
  • 2015年09月15日 14:37
  • 1618

POJ1006生理周期----【模板】CRT中国剩余定理即孙子定理即求解一次同余方程

Chinese remainder theorem(CRT): 中国剩余定理是求解一次线性同余方程组的方法。 中国剩余定理:  假设整数m1,m2, … ,mn两两互素,则同余方程组    有...
  • hahohehehe
  • hahohehehe
  • 2017年04月02日 22:25
  • 393

Poj 1006 生理周期(中国剩余定理)

一、Description 人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,人会在相应的方面表现出色。例如,智力周期的...
  • Insert_day
  • Insert_day
  • 2013年07月11日 18:17
  • 583
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1006-Biorhythms-生理周期峰值(中国剩余问题)
举报原因:
原因补充:

(最多只允许输入30个字)