“硬币方案”--蓝桥杯

欢迎访问我的新博客:http://www.milkcu.com/blog/

原文地址:http://www.milkcu.com/blog/archives/1366346880.html

题目描述

标题:硬币方案
有50枚硬币,可能包括4种类型:1元,5角,1角,5分。
已知总价值为20元。求各种硬币的数量。
比如:2,34,6,8 就是一种答案。
而 2,33,15,0 是另一个可能的答案,显然答案不唯一。
你的任务是确定类似这样的不同的方案一共有多少个(包括已经给出的2个)?
直接提交该数字,不要提交多余的内容。

分析

这是2013蓝桥杯模拟题的第二题,使用枚举法可以得到答案。

源代码

# include <stdio.h>
int main(void)
{
	int n[4];
	int m;
	m = 0;
	for(n[0] = 0; n[0] < 50; n[0]++) {
		for(n[1] = 0; n[1] < 50; n[1]++) {
			for(n[2] = 0; n[2] < 50; n[2]++) {
				for(n[3] = 0; n[3] < 50; n[3]++) {
					if(n[0] + n[1] + n[2] + n[3] == 50 && 5 * n[0] + 10 * n[1] + 50 * n[2] + 100 * n[3] == 2000) {
						m++;
					}
				}
			}
		}
	}
	printf("%d", m);
}

答案

50

### 关于蓝桥杯竞赛中的反转硬币问题 #### 问题分析 蓝桥杯的“反转硬币”问题是典型的贪心算法应用之一。该类问题通常涉及一系列初始状态下的硬币排列(正面或反面),通过若干次操作将其转换为目标状态。这类问题的核心在于如何设计一种高效的策略,在最少的操作次数内完成目标。 在解决此类问题时,可以采用如下方法[^1]: - **初始化状态**:记录当前硬币的状态序列。 - **定义操作规则**:每次可以选择一定数量的连续硬币进行翻转。 - **优化目标**:最小化翻转次数或将特定位置上的硬币调整至期望方向。 以下是基于上述逻辑的具体实现方式以及代码示例。 --- #### 算法实现 假设输入为一组长度为 `n` 的硬币序列,其中每个元素表示一枚硬币的方向(例如,0 表示正面朝上,1 表示背面朝上)。目标是将所有硬币统一成同一面(全部正面或全部背面)。 ##### 思路说明 为了减少不必要的重复计算,可以通过一次遍历的方式统计需要翻转的位置,并动态维护当前状态的变化情况。具体步骤如下: 1. 定义变量用于跟踪当前窗口内的翻转计数器; 2. 对整个数组逐一扫描,当遇到不符合预期的目标状态时触发翻转动作; 3. 更新受影响区域的状态标记直至结束。 下面是 Python 实现版本: ```python def reverse_coins(coins, target_state=0): """ 计算使硬币达到指定状态所需的最少翻转次数 参数: coins (list): 初始硬币状态列表(0 或 1) target_state (int): 目标最终状态,默认设为全零 返回值: int: 所需总步数 """ n = len(coins) flip_count = 0 current_flips = [0] * n # 当前每一段被影响了多少次翻转 for i in range(n): if i > 0: current_flips[i] += current_flips[i - 1] expected_value = coins[i] ^ current_flips[i] if expected_value != target_state: flip_count += 1 current_flips[i] += 1 if i + 2 < n: current_flips[i + 2] -= 1 return flip_count # 测试样例 coins_example = [1, 0, 1, 0, 1] print(reverse_coins(coins_example)) # 输出应为所需翻转次数 ``` 此函数接受一个二进制数组作为输入参数,并返回让这些硬币都变成相同一面所需要的最少翻转数目。注意这里的边界条件处理非常重要,因为不当设置可能导致越界访问错误或其他异常行为发生。 --- #### 时间复杂度评估 对于给定规模大小 N 的数据集来说,上面提到的方法只需要 O(N) 单趟线性迭代即可得出结论,因此效率非常高。此外由于只用了固定几个额外空间存储临时结果,整体内存消耗同样维持在一个较低水平之上[^2]。 --- ### 结论 综上所述,“反转硬币”这一经典编程挑战非常适合用来练习基本的数据结构与算法技巧。它不仅考验选手们对实际应用场景的理解能力,同时也锻炼了他们编写高效解决方案的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值