取石子游戏(ACM题目)

这是一个关于ACM竞赛中的取石子游戏问题。玩家轮流从两堆石子中取走任意数量或相同数量的石子,目标是取完所有石子。先手玩家在特定条件下会输掉游戏。文章通过举例和分析得出先手玩家输掉的条件,并提供了C#代码实现,用于判断先手是否能获胜。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 题目来自:(第一次做ACM的题目,推算了很长时间)

http://acm.pku.edu.cn/JudgeOnline/problem?id=1067

Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input
2 1
8 4
4 7

Sample Output
0
1
0

 

这种游戏,先取者的胜算是比较大的,我们可以推算出让先取者输掉游戏的a所对应的b。(a<b)

比如:当a=1时,b=2,先取者输。很显然,每一个不同的a值,所对应的b值至多只有一个,可能不存在,比如a=2。

试推出a值较小时所对应的b值࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值