题目来自:(第一次做ACM的题目,推算了很长时间)
http://acm.pku.edu.cn/JudgeOnline/problem?id=1067
Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
Sample Input
2 1
8 4
4 7
Sample Output
0
1
0
这种游戏,先取者的胜算是比较大的,我们可以推算出让先取者输掉游戏的a所对应的b。(a<b)
比如:当a=1时,b=2,先取者输。很显然,每一个不同的a值,所对应的b值至多只有一个,可能不存在,比如a=2。
试推出a值较小时所对应的b值