第五周任务(二)

原创 2012年03月21日 23:00:34
using namespace std;  
class CFraction  
{private:  
    int nume;  // 分子  
    int deno;  // 分母  
 public:  
    CFraction(int nu=0,int de=1);   //构造函数,初始化用  
    void Set(int nu=0,int de=1);    //置值,改变值时用  
    void input();               //按照"nu/de"的格式,如"5/2"的形式输入  
    void Simplify();            //化简(使分子分母没有公因子)  
    void amplify(int n);            //放大n倍,如2/3放大5倍为10/3  
    void output();      //输出:以8/6为例,style为0时,输出8/6;  
                            //style为1时,输出4/3;  
                            //style为2时,输出1(1/3),表示一又三分之一;  
                            //不给出参数和非1、2,认为是方式0  
};  
CFraction::CFraction(int nu,int de)  
{  
    nume=nu;  
    deno=de;  
}  
void CFraction::Set(int nu,int de)  
{  
    nume=nu;  
    deno=de;  
}  
void CFraction::input()  
{  
        cout<<nume<<"/"<<deno;  
}  
          
void CFraction::Simplify()  
{  
    int a,b,c,p;  
    int nu=nume,de=deno;  
    if(nume<=deno)  
    {  
        p=nume;  
    }  
    else  
        p=deno;  
    for(a=2;a<=p;a++)  
    {  
        b=nu%a;  
        c=de%a;  
        if(b==0&&c==0)  
        {  
            do  
            {  
                nu=nu/a;  
                de=de/a;  
                b=nu%a;  
                c=de%a;  
            }while(b==0&&c==0);  
        }  
    }  
    cout<<nu<<"/"<<de;  
}  
void CFraction::amplify(int n)  
{  
    cout<<"放大"<<n<<"倍后为:";  
    nume=nume*n;  
    cout<<nume<<"/"<<deno;  
}  
void CFraction::output()  
{     
    int a,b,c,p,n=1;  
    int nu=nume,de=deno;  
    if(nume<=deno)  
    {  
        p=nume;  
    }  
    else  
        p=deno;  
    for(a=2;a<=p;a++)  
    {  
        b=nu%a;  
        c=de%a;  
        if(b==0&&c==0)  
        {  
            do  
            {  
                nu=nu/a;  
                de=de/a;  
                b=nu%a;  
                c=de%a;  
            }while(b==0&&c==0);  
        }  
    }  
    if(nu>de)  
    {  
        n=nu/de;  
        nu=nu%de;  
        cout<<n<<"("<<nu<<"/"<<de<<")";  
    }  
}  
  
  
  
  
void main()  
{  
    CFraction CFraction1;  
    CFraction1.Set(5,2);  
    CFraction1.input();  
    cout<<endl;  
    CFraction CFraction2;  
    CFraction2.Set(56,48);  
    CFraction2.input();  
    cout<<"化简之后得:";  
    CFraction2.Simplify();  
    cout<<endl;  
    CFraction CFraction3;  
    CFraction3.Set(2,3);  
    CFraction3.input();  
    CFraction3.amplify(5);  
    cout<<endl;  
    CFraction2.Set(56,48);  
    CFraction2.input();  
  
  
    int c;  
    cout<<"请选择0,1,2,(其他数默认为0);"<<endl;  
    cin>>c;  
    switch(c)  
    {  
    case 1:  
        CFraction2.Simplify();  
        break;  
    case 2:  
        CFraction2.output();  
        break;  
    default:CFraction2.input();  
    }  
    cout<<endl;  
}  

coursera机器学习课程第五周——课程笔记

第五周课程学习结束,一直都是边上课边做笔记,没有想过在这里再梳理一遍然后将笔记整理出来,考虑之后觉得这一步很重要,可以借此对学过的这一周所有知识做一个梳理,方便自己更好的理解这些知识,而且这些笔记放在...
  • ccblogger
  • ccblogger
  • 2017年11月13日 18:29
  • 116

机器学习第5周!

教辅说这周的作业是史上最难
  • Clifnich
  • Clifnich
  • 2016年09月05日 17:47
  • 639

machine-learning第五周 上机作业

毫无疑问,难度越来越大了,首先我们得复习相关概念: 1、导数(变化率)与微分 (变化量) 2、数学里的 e 为什么叫做自然底数? 3、女神的文章必不可少 剩下的必须慢慢啃了。总之,本章要完全理解我觉得...
  • dialoal
  • dialoal
  • 2016年01月22日 15:32
  • 1552

第五周工作总结

本周已完成工作内容及总结 1.对于这周呢,其实主要就是完成关于javascript的内容,在开始两天就是对两道考核进行实现; 2.接着就是导师对两道考核题进行评判,然后就是对之前的...
  • Do_Wanted
  • Do_Wanted
  • 2015年08月23日 09:12
  • 133

吴恩达机器学习笔记_第五周

神经网络——模型学习   Cost Function:从逻辑回归推广过来 计算最小值,无论用什么方法,都需要计算代价和偏导。   网络结构的前向传播和可向量化的特点:   BP算...
  • hunterlew
  • hunterlew
  • 2016年05月15日 11:43
  • 2247

普林斯顿算法课第五周作业

Programming Assignment 5: Kd-Trees Write a data type to represent a set of points in the unit squar...
  • tumaolin94
  • tumaolin94
  • 2014年10月19日 11:15
  • 1501

机器学习-学习笔记 学习总结归纳(第五周)

基本形式例如绪论中的判断好瓜的算法,就可以用一个线性的模型来表示,好瓜 = 色泽 * 0.3 + 0.2 * 根 + 0.2 * 响声 == 1, 例如这样的线性模型来进行表示。线性回归 我的理解就...
  • linglian0522
  • linglian0522
  • 2017年07月14日 19:32
  • 183

JAVA入门(中国大学mook) 第五周 多项式

JAVA入门 第五周 1多项式 1 多项式加法(5分) 题目内容: 一个多项式可以表达为x的各次幂与系数乘积的和,比如:   现在,你的程序要读入两...
  • smallliumang
  • smallliumang
  • 2017年12月19日 20:00
  • 37

Coursera吴恩达机器学习课程 总结笔记及作业代码——第5周神经网络续

Neural Networks:Learning上周的课程学习了神经网络正向传播算法,这周的课程主要在于神经网络的反向更新过程。1.1 Cost function我们先回忆一下逻辑回归的价值函数 J...
  • qq_27008079
  • qq_27008079
  • 2017年05月14日 21:21
  • 4979

第五周任务一

#include #include using namespace std; class Triangle {public: Triangle(double x,double y,double...
  • zcyhr2012
  • zcyhr2012
  • 2013年03月29日 15:43
  • 469
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第五周任务(二)
举报原因:
原因补充:

(最多只允许输入30个字)