详细剖析浮点型运算的精度丢失

转载 2011年01月20日 05:19:00
问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么?

 

现在我们就详细剖析一下浮点型运算为什么会造成精度丢失?

 

1、小数的二进制表示问题

       首先我们要搞清楚下面两个问题:

     (1)  十进制整数如何转化为二进制数

           算法很简单。举个例子,11表示成二进制数:

                     11/2=5   余   1

                       5/2=2   余   1

                       2/2=1   余   0

                       1/2=0   余   1

                          0结束         11二进制表示为(从下往上):1011

          这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。

      (2) 十进制小数如何转化为二进制数

           算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数

                     0.9*2=1.8   取整数部分  1

                     0.8(1.8的小数部分)*2=1.6    取整数部分  1

                     0.6*2=1.2   取整数部分  1

                     0.2*2=0.4   取整数部分  0

                     0.4*2=0.8   取整数部分  0

                     0.8*2=1.6   取整数部分  1

                     0.6*2=1.2   取整数部分  0

                              .........      0.9二进制表示为(从上往下): 1100100100100......

           注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。

 

2、 float型在内存中的存储

     众所周知、 Java 的float型在内存中占4个字节。float的32个二进制位结构如下

           

         float内存存储结构  

                 4bytes          31                  30            29----23        22----0         

                        表示       实数符号位      指数符号位        指数位          有效数位

        其中符号位1表示正,0表示负。有效位数位24位,其中一位是实数符号位。

 

         将一个float型转化为内存存储格式的步骤为:

        (1)先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
     (2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
     (3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。
     (4)如果实数是正的,则在第31位放入“0”,否则放入“1”。
     (5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
     (6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。

 

          举例说明: 11.9的内存存储格式

       (1) 将11.9化为二进制后大约是" 1011. 1110011001100110011001100..."。

       (2) 将小数点左移三位到第一个有效位右侧: "1. 011 11100110011001100110 "。 保证有效位数24位,右侧多余的截取(误差在这里产生了 )。

       (3) 这已经有了二十四位有效数字,将最左边一位“1”去掉,得到“ 011 11100110011001100110 ”共23bit。将它放入float存储结构的第22到第0位。

       (4) 因为11.9是正数,因此在第31位实数符号位放入“0”。

       (5) 由于我们把小数点左移,因此在第30位指数符号位放入“1”。

       (6) 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位。

 

           最后表示11.9为:  0 1 0000010 011 11100110011001100110

 

           再举一个例子:0.2356的内存存储格式
      (1)将0.2356化为二进制后大约是0.00111100010100000100100000。
      (2)将小数点右移三位得到1.11100010100000100100000。
      (3)从小数点右边数出二十三位有效数字,即11100010100000100100000放
入第22到第0位。
      (4)由于0.2356是正的,所以在第31位放入“0”。
      (5)由于我们把小数点右移了,所以在第30位放入“0”。
      (6)因为小数点被右移了3位,所以将3化为二进制,在左边补“0”补足七
位,得到0000011,各位取反,得到1111100,放入第29到第23位。
       

           最后表示0.2356为:0 0 1111100 11100010100000100100000

 

           将一个内存存储的float二进制格式转化为十进制的步骤:
     (1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
     (2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
     (3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
     (4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。

 

3、浮点型的减法运算

 

          浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:  
    (1) 0操作数的检查;

                如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。

   (2) 比较阶码(指数位)大小并完成对阶;

                两浮点数进行加减,首先要看两数的 指数位 是否相同,即小数点位置是否对齐。若两数 指数位 相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶

                如何对 阶(假设两浮点数的指数位为 Ex Ey ):

        通过尾数的移位以改变 Ex Ey ,使之相等。 由 于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定使 尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐 ,即小阶的尾数向右移位 ( 相当于小数点左移 ) ,每右移一位,其阶码加 1 ,直到两数的阶码相等为止,右移的位数等于阶差 △ E
   (3) 尾数(有效数位)进行加或减运算;

               对阶完毕后就可 有效数位 求和。 不论是加法运算还是减法运算,都按加法进行操作,其方法与定点加减运算完全一样。
   (4) 结果规格化并进行舍入处理。

                略

 

        浮点数的加减法:具体见http://www.zzslxx.com/wmy/jy/Chap02/2.7.1.htm

 

4、 计算12.0f-11.9f

 

       12.0f 的内存存储格式为:    0 1 0000010 10000000000000000000000     

     11.9f 的内存存储格式为:     0 1 0000010 011 11100110011001100110


     可见两数的指数位完全相同,只要对有效数位进行减法即可。

     12.0f-11.9f   结果:         0 1 0000010 00000011001100110011010

      

     将结果还原为十进制为: 0.000 11001100110011010= 0.10000038

 

 

 

原文链接:http://hxraid.javaeye.com/blog/504293

相关文章推荐

精度丢失

自己一直纠结于浮点类型精度丢失问题,认为浮点类型的相等比较是不靠谱的,写代码时一直不太敢用,导致了很多不必要的麻烦以及WA,所以自己研究了一下。 首先上结论,就是说浮点类型的比较是靠谱的,两个浮点...

Java浮点数float和double精确计算的精度误差问题总结

1、float整数计算误差 案例:会员积分字段采用float类型,导致计算会员积分时,7位整数的数据计算结果出现误差。 原因:超出float精度范围,无法精确计算。 float和double的精...

124.浮点型数据精度不准确的探究

最近接手了一个新的项目, 项目中也涉及到了关于小数的计算, 项目中也并不是使用的Decimal来计算的, 所以又发现了浮点数据精度不准确的问题。...

PHP float加减乘除

如果用php的+-*/计算浮点数的时候,可能会遇到一些计算结果错误的问题,比如echo intval( 0.58*100 );会打印57,而不是58 这个其实是计算机底层二进制无法精确表示浮点数...

关于商业运算中浮点型运算丢失精度问题

在JAVA中,用浮点型计算某些数值的时候会变成科学计数,问题如图: 所以为了解决这个问题我建议用BigDecimal这个类才行,但是用Double传进去还是出现以上的问题,仔细观察BigDeci...

javascript 中浮点型数字的运算精度

javascript种 浮点型数字 运算时,精度会丢失,下面方法可以解决精度丢失问题 //除法函数,用来得到精确的除法结果 //说明:javascript的除法结果会有误差,在两个浮点数相除的时候...

高精度计算----减法运算(浮点型)

基于上一贴,修改减法运算适合于高精度浮点型计算。 因为减法比加法难度大一点,考虑的地方也要多一些,可能代码有欠缺,欢迎指出。 运算说明: 1、相减函数依旧没改变,包括上一贴的判断被减数与减数的大...

Java数值避免浮点型计算丢失精度问题

问题描述及方案 假设我们在做电商项目,在进行计算时这个丢失精度在产品价格计算就会出现问题,很有可能造成我们手里有9.99元然后后面会有一堆9,但是呢这些钱无法购买一个10元的商品。 在某些编程语言中...

Java中的浮点型进行四则运算精度丢失的问题

Android开发过程中需要有很多的商业运算,这些运算中会出现对float类型和double类型的四则运算。单纯拿float和double进行四则运算就会出现很大的精度丢失问题。为了解决这个问题,建议...

java浮点计算精度丢失问题

import java.math.BigDecimal; /** * 由于Java的简单类型不能够精确的对浮点数进行运算,这个工具类提供精 * 确的浮点数运算,包括加减乘除和四舍五入。 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:详细剖析浮点型运算的精度丢失
举报原因:
原因补充:

(最多只允许输入30个字)