HDU 5514 Frogs(容斥)

本文介绍一种解决特定算法问题的方法,即给定n个步长和圈长m,计算所有可能到达的位置之和。通过分析步长与圈长的最大公约数,利用因子关系进行计算,最终以O(num因子^2)的复杂度解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nm0m1
n
gcd(a[i],m)=k[i],im/k
n1W
mtot
k[i]
vis[j]num[j]

O(num2)
62
1623
2636160
36121
2


代码:

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")

using namespace std;
#define   MAX           10005
#define   MAXN          1000005
#define   maxnode       205
#define   sigma_size    2
#define   lson          l,m,rt<<1
#define   rson          m+1,r,rt<<1|1
#define   lrt           rt<<1
#define   rrt           rt<<1|1
#define   middle        int m=(r+l)>>1
#define   LL            long long
#define   ull           unsigned long long
#define   mem(x,v)      memset(x,v,sizeof(x))
#define   lowbit(x)     (x&-x)
#define   pii           pair<int,LL>
#define   bits(a)       __builtin_popcount(a)
#define   mk            make_pair
#define   limit         10000

//const int    prime = 999983;
const int    INF   = 0x3f3f3f3f;
const LL     INFF  = 0x3f3f;
//const double pi    = acos(-1.0);
const double inf   = 1e18;
const double eps   = 1e-9;
const LL     mod   = 1e8+9;
const ull    mx    = 133333331;

/*****************************************************/
inline void RI(int &x) {
      char c;
      while((c=getchar())<'0' || c>'9');
      x=c-'0';
      while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
 }
/*****************************************************/

int a[MAX];
int yin[MAX];
int vis[MAX];
int num[MAX];

int gcd(int a,int b){
    if(!b) return a;
    return gcd(b,a%b);
}

int main(){
    int t,kase=0;
    cin>>t;
    while(t--){
        int n,m;
        cin>>n>>m;
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        int tot=0;
        mem(vis,0);
        mem(num,0);
        for(int i=1;i<=sqrt(m);i++){
            if(m%i==0){
                yin[tot++]=i;
                if(m/i!=i) yin[tot++]=m/i;
            }
        }
        sort(yin,yin+tot);
        for(int i=0;i<n;i++){
            int k=gcd(a[i],m);
            for(int j=0;j<tot;j++){
                if(yin[j]%k==0) vis[j]=1;
            }
        }
        vis[tot-1]=0;
        LL ans=0;
        for(int i=0;i<tot;i++){
            if(vis[i]!=num[i]){
                int x=(m-1)/yin[i];
                ans+=(LL)x*(x+1)/2*yin[i]*(vis[i]-num[i]);
                int y=vis[i]-num[i];
                for(int j=i+1;j<tot;j++){
                    if(yin[j]%yin[i]==0) num[j]+=y;
                }
            }
        }
        kase++;
        printf("Case #%d: ",kase);
        cout<<ans<<endl;
    }
    return 0;
}    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值