关闭

HDU 2546 饭卡(01背包)

标签: ACM动态规划
214人阅读 评论(0) 收藏 举报
分类:

Description

电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额。如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够)。所以大家都希望尽量使卡上的余额最少。 
某天,食堂中有n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。 

Input

多组数据。对于每组数据: 
第一行为正整数n,表示菜的数量。n<=1000。 
第二行包括n个正整数,表示每种菜的价格。价格不超过50。 
第三行包括一个正整数m,表示卡上的余额。m<=1000。 

n=0表示数据结束。 

Output

对于每组输入,输出一行,包含一个整数,表示卡上可能的最小余额。

Sample Input

1
50
5
10
1 2 3 2 1 1 2 3 2 1
50
0

Sample Output

-45
32

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1010;
int v[N];
int dp[N][N];
int main(){
	int n;
	while(~scanf("%d",&n)&&n){
		for(int i=1;i<=n;i++){
			scanf("%d",&v[i]);
		}	
		sort(v+1,v+n+1);
		int m;
		
		scanf("%d",&m);
		memset(dp,0,sizeof(dp));
		if(m<5){
			printf("%d\n",m);
			continue;
		}
		for(int i=1;i<=n-1;i++){
			for(int j=0;j<=m-5;j++){
				if(j<v[i]) dp[i][j]=dp[i-1][j];
				else dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+v[i]);
			}
		}
		printf("%d\n",m-dp[n-1][m-5]-v[n]);
		
	}
}

01背包问题。

要让剩下的余额最小,即花费最大,我们应该贪心地用最后5元买最贵的菜,剩下的n-1个菜m-5元就是01背包问题,使菜的总价值尽可能大;

单独考虑m<5的情况,此时余额为m;

这里dp[i][j]表示的是买到第i个菜,花费为j时菜的最大价值;

在用二维数组dp时,要严格地根据问题来判断dp的条件:剩下m-5元已经是严格的01背包问题,此时不会再出现负的钱数(如果钱数为负那么最后就不足5元购买最贵的菜),因为j的循环是从0~m-5;如果当前的花费不足以购买当前的菜品,那么保持上一个状态;

最后用钱数减去dp[n-1][m-5]和v[n]即为结果;




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:24262次
    • 积分:1502
    • 等级:
    • 排名:千里之外
    • 原创:129篇
    • 转载:3篇
    • 译文:0篇
    • 评论:12条
    最新评论