关闭

LeetCode Triangle

标签: javaleetcodeDP
106人阅读 评论(0) 收藏 举报
分类:

Description:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Solution:

前面做过类似的题目,用DP解决。可以从下到上,也可以从上到下。这里用了从下到上,因为这样,dp[0][0]就是最终的结果;否则从上到下,需要最后一层进行一次遍历。

dp[i][j]表示从最后一层到这个点,最短的和。状态转移方程:

dp[i][j] = dp[i][j] + min( dp[i+1][j], dp[i+1][j+1] );

import java.util.*;

public class Solution {
	public int minimumTotal(List<List<Integer>> triangle) {
		int n = triangle.size();
		int dp[][] = new int[n][n];

		Iterator<List<Integer>> lineIterator = triangle.iterator();
		for (int i = 0; i < n; i++) {
			ArrayList<Integer> line = (ArrayList<Integer>) lineIterator.next();
			Iterator<Integer> ite = line.iterator();
			for (int j = 0; j <= i; j++) {
				dp[i][j] = ite.next();
			}
		}

		for (int i = n - 2; i >= 0; i--) {
			for (int j = 0; j <= i; j++)
				dp[i][j] += Math.min(dp[i + 1][j], dp[i + 1][j + 1]);
		}

		return dp[0][0];
	}
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:62097次
    • 积分:3257
    • 等级:
    • 排名:第10440名
    • 原创:288篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    最新评论