# Longest Subarray with Equal "1" and "0"

543人阅读 评论(0)

Problem: Given an array that only contains "1" and "0", find the longest subarray which contains equal number of "1" and "0".

Solution: With hash table, we can have a O(N) solution. The detail is as follow:

• First convert all "0" to "-1", then calculate c[i] = sum(a[0], ... , a[i]). It takes O(N) to calculate all the c[i].
• Then our task is to find a c[i] and a c[j] such that  c[i] = c[j]  and |j-i| is maximum. With a hash table, we can finish this job by doing a linear scan with a time complexity of   O(N).  // 用hashtable存储具有相同key的position值
• There is a special case you need to handle. When c[N-1] = 0 (assume N is the size of a), the longest subarray is just a itself.

Idea: For every sum value record its leftmost occrrence in the left array and rightmost occrnce in the right array.such that in sum value at ith index == sum value at jth index it means that the subarray from index i to j has = no. of 1's and 0's.

Code:
#include<stdio.h>
#include<conio.h>
int main()
{
int arr[100], rite[200],lft[200],len[200],sum[100], n,i,tmp, lnth=0;
scanf("%d",&n);
printf("%d\n",n);
scanf("%d",&tmp);
if(tmp==0)
sum[0] = -1;
else
sum[0] = tmp;
for(i=1;i<n;i++)
{
scanf("%d",&tmp);
arr[i] = tmp;
if(tmp==0)
sum[i] = sum[i-1] - 1;
else
sum[i] = sum[i-1] + 1;
if(sum[i]==0)
lnth = i;
// printf("%d\n",sum[i]);
}
//printf("sum = %d\n",sum[n-1]);
for(i=0;i<(2*n-1);i++)
{
lft[i] = 0;
rite[i] = 0;
}
for(i=0;i<n;i++)
{
if(sum[i]>0)
rite[sum[i]+n-1] = i;
else if(sum[i]<0)
rite[sum[i]+n] = i;
}
for(i=n-1;i>=0;i--)
{
if(sum[i]>0)
lft[sum[i]+n-1] = i;
else if(sum[i]<0)
lft[sum[i]+n] = i;
}
for(i=0;i<(2*n-1);i++)
{
if(lnth<(rite[i]-lft[i]))
lnth = (rite[i]-lft[i]);
}
printf("length = %d",lnth);
getch();
return 0;
}

Ref:

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：86973次
• 积分：1178
• 等级：
• 排名：千里之外
• 原创：23篇
• 转载：30篇
• 译文：1篇
• 评论：10条
文章分类
Links