hive on spark 编译

转载 2016年05月30日 23:59:04

转:http://blog.csdn.net/stark_summer/article/details/48466749

前置条件说明

Hive on Spark是Hive跑在Spark上,用的是Spark执行引擎,而不是MapReduce,和Hive on Tez的道理一样。 
从Hive 1.1版本开始,Hive on Spark已经成为Hive代码的一部分了,并且在spark分支上面,可以看这里https://github.com/apache/hive/tree/spark,并会定期的移到master分支上面去。 
关于Hive on Spark的讨论和进度,可以看这里https://issues.apache.org/jira/browse/HIVE-7292。 
hive on spark文档:https://issues.apache.org/jira/secure/attachment/12652517/Hive-on-Spark.pdf

源码下载

Git clone https://github.com/apache/hive.git hive_on_spark

编译

cd hive_on_spark/
 git branch -r
  origin/HEAD -> origin/master
  origin/HIVE-4115
  origin/HIVE-8065
  origin/beeline-cli
  origin/branch-0.10
  origin/branch-0.11
  origin/branch-0.12
  origin/branch-0.13
  origin/branch-0.14
  origin/branch-0.2
  origin/branch-0.3
  origin/branch-0.4
  origin/branch-0.5
  origin/branch-0.6
  origin/branch-0.7
  origin/branch-0.8
  origin/branch-0.8-r2
  origin/branch-0.9
  origin/branch-1
  origin/branch-1.0
  origin/branch-1.0.1
  origin/branch-1.1
  origin/branch-1.1.1
  origin/branch-1.2
  origin/cbo
  origin/hbase-metastore
  origin/llap
  origin/master
  origin/maven
  origin/next
  origin/parquet
  origin/ptf-windowing
  origin/release-1.1
  origin/spark
  origin/spark-new
  origin/spark2
  origin/tez
  origin/vectorization

 git checkout origin/spark
 git branch
* (分离自 origin/spark)
  master


修改$HIVE_ON_SPARK/pom.xml 

spark版本改成spark1.4.1

<spark.version>1.4.1</spark.version>


Hadoop版本改成2.3.0-cdh5.1.0

<hadoop-23.version>2.3.0-cdh5.1.0</hadoop-23.version>


编译命令

export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"
mvn clean package -Phadoop-2 -DskipTests


添加Spark的依赖到Hive的方法

spark home:/home/cluster/apps/spark/spark-1.4.1 
hive home:/home/cluster/apps/hive_on_spark

1.set the property ‘spark.home’ to point to the Spark installation:

hive> set spark.home=/home/cluster/apps/spark/spark-1.4.1;


  1. Define the SPARK_HOME environment variable before starting Hive CLI/HiveServer2:
    export SPARK_HOME=/home/cluster/apps/spark/spark-1.4.1


  2. Set the spark-assembly jar on the Hive auxpath:
    hive --auxpath /home/cluster/apps/spark/spark-1.4.1/lib/spark-assembly-*.jar


  3. Add the spark-assembly jar for the current user session:
    hive> add jar /home/cluster/apps/spark/spark-1.4.1/lib/spark-assembly-*.jar;


  4. Link the spark-assembly jar to $HIVE_HOME/lib.

启动Hive过程中可能出现的错误:

[ERROR] Terminal initialization failed; falling back to unsupported
java.lang.IncompatibleClassChangeError: Found class jline.Terminal, but interface was expected
        at jline.TerminalFactory.create(TerminalFactory.java:101)
        at jline.TerminalFactory.get(TerminalFactory.java:158)
        at jline.console.ConsoleReader.<init>(ConsoleReader.java:229)
        at jline.console.ConsoleReader.<init>(ConsoleReader.java:221)
        at jline.console.ConsoleReader.<init>(ConsoleReader.java:209)
        at org.apache.hadoop.hive.cli.CliDriver.getConsoleReader(CliDriver.java:773)
        at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:715)
        at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:675)
        at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:615)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.hadoop.util.RunJar.main(RunJar.java:212)

Exception in thread "main" java.lang.IncompatibleClassChangeError: Found class jline.Terminal, but interface was expected


解决方法:export HADOOP_USER_CLASSPATH_FIRST=true

其他场景的错误解决方法参见:https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started

需要设置spark.eventLog.dir参数,比如:

set spark.eventLog.dir= hdfs://master:8020/directory 
否则查询会报错,否则一直报错:/tmp/spark-event类似的文件夹不存在

启动hive后设置执行引擎为spark:

hive> set hive.execution.engine=spark;


设置spark的运行模式:

hive> set spark.master=spark://master:7077


或者yarn:spark.master=yarn

Configure Spark-application configs for Hive

可以配置在spark-defaults.conf或者hive-site.xml

spark.master=<Spark Master URL>
spark.eventLog.enabled=true;            
spark.executor.memory=512m;             
spark.serializer=org.apache.spark.serializer.KryoSerializer;
spark.executor.memory=...  #Amount of memory to use per executor process.
spark.executor.cores=...  #Number of cores per executor.
spark.yarn.executor.memoryOverhead=...
spark.executor.instances=...  #The number of executors assigned to each application.
spark.driver.memory=...  #The amount of memory assigned to the Remote Spark Context (RSC). We recommend 4GB.
spark.yarn.driver.memoryOverhead=...  #We recommend 400 (MB).


参数配置详见文档:https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started

执行sql语句后可以在监控页面查看job/stages等信息

hive (default)> select city_id, count(*) c from city_info group by city_id order by c desc limit 5;
Query ID = spark_20150309173838_444cb5b1-b72e-4fc3-87db-4162e364cb1e
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
state = SENT
state = STARTED
state = STARTED
state = STARTED
state = STARTED
Query Hive on Spark job[0] stages:
1
Status: Running (Hive on Spark job[0])
Job Progress Format
CurrentTime StageId_StageAttemptId: SucceededTasksCount(+RunningTasksCount-FailedTasksCount)/TotalTasksCount [StageCost]
2015-03-09 17:38:11,822 Stage-0_0: 0(+1)/1      Stage-1_0: 0/1  Stage-2_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2015-03-09 17:38:14,845 Stage-0_0: 0(+1)/1      Stage-1_0: 0/1  Stage-2_0: 0/1
state = STARTED
state = STARTED
2015-03-09 17:38:16,861 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1      Stage-2_0: 0/1
state = SUCCEEDED
2015-03-09 17:38:17,867 Stage-0_0: 1/1 Finished Stage-1_0: 1/1 Finished Stage-2_0: 1/1 Finished
Status: Finished successfully in 10.07 seconds
OK
city_id c
-1000   22826
-10     17294
-20     10608
-1      6186
    4158
Time taken: 18.417 seconds, Fetched: 5 row(s)


这里写图片描述

相关文章推荐

hive on spark 编译

前置条件说明Hive on Spark是Hive跑在Spark上,用的是Spark执行引擎,而不是MapReduce,和Hive on Tez的道理一样。 从Hive 1.1版本开始,Hive on...

Hive on Spark安装配置详解(都是坑啊)

Hive on Spark安装配置详解(都是坑啊) 个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b86...

自己的HADOOP平台(三):Mysql+hive远程模式+Spark on Yarn

Spark和hive配置较为简单,为了方便Spark对数据的使用与测试,因此在搭建Spark on Yarn模式的同时,也把Mysql + Hive一起搭建完成,并且配置Hive对Spark的支持,让...

Hive on Spark源码分析(三)—— SparkClilent与SparkClientImpl(上)

SparkClient接口定义了远程Spark客户端的API // 提交一个异步执行的job,返回一个用于监控job的JobHandleT extends Serializable> JobHand...
  • Camu7s
  • Camu7s
  • 2016年08月17日 00:59
  • 1691

Hive on Spark解析(转自Intel李锐)

摘要:Hive是基于Hadoop平台的数据仓库,已经成为Hadoop事实上的SQL引擎标准。相较于Impala、Shark等,Hive拥有更为广泛的用户基础以及对SQL语法更全面的支持。这里,将走进H...
  • duhm163
  • duhm163
  • 2016年03月17日 13:22
  • 226

SparkSQL与Hive on Spark的比较

转载自:http://blog.csdn.net/yeruby/article/details/51448188 简要介绍了SparkSQL与Hive on Spark的区别与联系 ...

hive on spark部署

本文档相关软件的版本:spark-1.0.2、hadoop2.4.0和hive-0.13.0 一、编译打包 1、准备        将 hadoop gateway所使用的 hadoop...

搭建Hive On Spark

随着Hadoop的深入学习,渐渐用到了Hadoop相关的家族成员Hive、Spark、Sqoop等,其中Hive主要是为了使我们在进行大数据开发的时候更加快捷高效,而且又因为它的类SQL的特性使我们很...

Hive on Spark解析

Hive是基于Hadoop平台的数据仓库,已经成为Hadoop事实上的SQL引擎标准。相较于Impala、Shark等,Hive拥有更为广泛的用户基础以及对SQL语法更全面的支持。这里,将走进Hive...

hive on spark 遇到的坑

装了一个多星期的hive on spark 遇到了许多坑。还是写一篇随笔,免得以后自己忘记了。同事也给我一样苦逼的人参考。 先说明一下,这里说的Hive on Spark是Hive跑在Spark...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hive on spark 编译
举报原因:
原因补充:

(最多只允许输入30个字)