关闭

POJ 1840 Eqs(Hash+思维)

标签: hashpoj
159人阅读 评论(0) 收藏 举报
分类:

poj 1840

题目大意

求方程a1x31+a2x32+ a3x33+ a4x34+ a5x35=0 解的个数,ai∈[-50,50],xi∈[-5-,50]且xi!=0

分析

直接暴力枚举肯定超时,这里用到了一个巧妙的方法:

(a1x31+a2x32)=a3x33+a4x34+a5x35

因为要判断多少组解满足上面等式,枚举左边将左边的值哈希后再枚举右边查找哈希表中是否存在右边的和,这样就能以O(1003+1002)的复杂度解决问题了。
这道题很考察思维的灵活性。

代码

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<queue>
using namespace std;
const int INF=999999999;
int a1,a2,a3,a4,a5;
int Key=10007;
struct Hash
{
     int sum;
     int t;
}H[10010][50];
int cnt[10010];
bool  Find(int x,int y)
{
      int loc=abs(-a1*x*x*x-a2*y*y*y)%Key;
      for(int i=1;i<=cnt[loc];i++)
      {
            if(H[loc][i].sum==(-a1*x*x*x-a2*y*y*y )){H[loc][i].t++;return 1;}
      }
      return 0;
}
void Work()
{
      int ans=0;
      for(int i=-50;i<=50;i++)
      {
            if(i==0)continue;

            for(int j=-50;j<=50;j++)
            {
                  if(j==0)continue;
                  int loc=abs(-a1*i*i*i-a2*j*j*j)%Key;
                  if(Find(i,j)==1)continue;
                  else
                  {
                      H[loc][++cnt[loc]].sum=-a1*i*i*i-a2*j*j*j;
                      H[loc][cnt[loc]].t=1;
                  }
            }
      }

      for(int i=-50;i<=50;i++)
      {
            if(i==0)continue;
            for(int j=-50;j<=50;j++)
            {
                  if(j==0)continue;
                  for(int k=-50;k<=50;k++)
                  {
                        if(k==0)continue;
                        int loc=abs(a3*i*i*i+a4*j*j*j+a5*k*k*k)%Key;
                        //cout<<loc<<endl;
                        for(int p=1;p<=cnt[loc];p++)
                        {
                              if(H[loc][p].sum==(a3*i*i*i+a4*j*j*j+a5*k*k*k))ans+=H[loc][p].t;
                        }
                  }
            }
      }
      cout<<ans<<endl;
}
int main()
{
    while(scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5)!=EOF)
    {
          memset(H,0,sizeof(H));
          sizeof(cnt,0,sizeof(cnt));
          Work();
    }
}
0
0
查看评论

poj-1840 Eqs 暴力+哈希

Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The coefficients are given integers from the interval...
  • chAngE_AC
  • chAngE_AC
  • 2015-08-17 10:46
  • 296

poj 1840:Eqs

给定a1,a2,a3,a4,a5,求满足
  • u013898034
  • u013898034
  • 2014-04-20 03:03
  • 313

POJ 1840 Eqs hash

题意:解方程组a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ,x属于[50,50]且x!=0输入a1,a2,a3,a4,a5,输出一共有多少种满足方程的解。 题解:左右分开,hash #include using namespace std; #
  • Tsaid
  • Tsaid
  • 2011-07-28 22:47
  • 411

POJ 1840 - Eqs(数学)

题目: http://poj.org/problem?id=1840 题意: 给出一个5元3次方程,输入其5个系数,求它的解的个数. 其中系数 ai∈[-50,50]  自变量xi∈[-50,0)∪(0,50] 思路: 简单暴力肯定超时的了, 暴力枚举要5层循环. 看了题解~ ...
  • u013534690
  • u013534690
  • 2015-02-25 16:21
  • 323

poj 1840 Eqs(二分)

Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 10433   Accepted: 5072 Description Consider equations having the ...
  • WEYuLi
  • WEYuLi
  • 2013-06-29 09:38
  • 554

(POJ 1840)Eqs 哈希表

Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 15893 Accepted: 7799 DescriptionConsider equations having the following ...
  • STILLxjy
  • STILLxjy
  • 2016-10-01 20:59
  • 149

POJ 1840 Eqs(hash表)

Description 给出一个5元3次方程a1*x1^3+a2*x2^3+a3*x3^3+a4*x4^3+a5*x5^3=0,输入其5个系数,求它的解的个数,其中系数 ai∈[-50,50] 自变量xi∈[-50,0)∪(0,50] Input 方程的五个系数 Output 方程解的个...
  • V5ZSQ
  • V5ZSQ
  • 2015-07-07 11:10
  • 405

Eqs POJ - 1840

题目描述 Consider equations having the following form: a1x1^3+ a2x2^3+ a3x3^3+ a4x4^3+ a5x5^3=0 The coefficients are given integers from the interval...
  • elbadaernu
  • elbadaernu
  • 2017-04-19 16:46
  • 102

poj 1840 Eqs

题意比较简单啊,我这个英语菜鸟都可以看懂啊、、、就是说给出a1,a2,a3,a4,a5,然后再[-50,50]的区间内找到x1,x2,x3,x4,x5使得a1*x1^3+ a2*x2^3+ a3*x3^3+ a4*x4^3+ a5*x5^3=0。直接枚举的话会是100^5=100E次一定会超时的啊、...
  • xu12110501127
  • xu12110501127
  • 2013-08-21 15:34
  • 2306

Poj 1840 Eqs(Hash)

Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 12911   Accepted: 6324 Des...
  • u013082590
  • u013082590
  • 2015-02-13 13:25
  • 240
    个人资料
    • 访问:94482次
    • 积分:2630
    • 等级:
    • 排名:第16353名
    • 原创:168篇
    • 转载:7篇
    • 译文:0篇
    • 评论:154条
    最新评论
    链接