BZOJ1002 [FJOI2007]轮状病毒

BZOJ1002解析与代码实现
本文详细解析了BZOJ1002题目,利用MatrixTree定理计算生成树的数量,并通过拉普拉斯展开推导出行列式的具体计算方法。最后给出了使用高精度计算的C++代码实现。

BZOJ1002

分析:

裸的ST(生成树)个数...

先介绍一下Matrix Tree定理:一个图的ST个数就是度数矩阵减邻接矩阵的n-1阶主子式的行列式的绝对值。

我们不难得出这道题的行列式形如:


我们假设g(i)为上面那个行列式左上的i行主子式。

运用拉普拉斯展开,不难得出上面那个行列式的值等于g(n-1)*3-g(n-2)*2-2

同理可以得出g的递推公式为g(i) = g(i-1)*3-g(i-2),初始化g(1) = 3, g(2) = 8

然后套个高精就行了(高精是以前写的,代码有些乱)

#include <iostream>
#include <cstring>
using namespace std;

const int maxn = 1005;
struct BigInt {
	int a[maxn];
	
	//构造函数 
	BigInt() {
		memset(a, 0, sizeof a);
		a[0] = 1;
	}
	BigInt(long long n) {
		*this = n;
	}
	
	//赋值 
	BigInt operator = (long long n) {
		a[0] = 1;
		if(n == 0)
			a[1] = 0;
		else {
			while(n != 0) {
				a[a[0]++] = n % 10;
				n /= 10;
			}
			a[0]--;
		}
		return *this;
	}
	
	//基本运算符 
	BigInt operator + (const BigInt &b) const {
		BigInt c;
		int temp = 0;
		while(c.a[0] <= a[0] || c.a[0] <= b.a[0]) {
			c.a[c.a[0]] = a[c.a[0]] + b.a[c.a[0]] + temp;
			temp = c.a[c.a[0]] / 10;
			c.a[c.a[0]++] %= 10;
		}
		c.a[c.a[0]] = temp;
		for(int i = c.a[0]; i > 1; i--)
		if(!c.a[i])
			c.a[0]--;
		else break;
		return c;
	}
	BigInt operator - (const BigInt &b) const {
		BigInt c;
		int temp = 0;
		while(c.a[0] <= a[0] || c.a[0] <= b.a[0]) {
			c.a[c.a[0]] = a[c.a[0]] + 10 - b.a[c.a[0]] - temp;
			temp = !(c.a[c.a[0]] / 10);
			c.a[c.a[0]++] %= 10;
		}
		for(int i = --c.a[0]; i > 1; i--)
		if(!c.a[i])
			c.a[0]--;
		else break;
		return c;
	}
	BigInt operator * (const BigInt &b) const {
		BigInt c;
		c.a[0] = a[0] + b.a[0];
		int temp = 0;
		for(int i = 1; i <= a[0]; i++) {
			c.a[i+b.a[0]-1] = temp;
			temp = 0;
			for(int j = 1; j <= b.a[0]; j++) {
				c.a[i+j-1] += a[i] * b.a[j] + temp;
				temp = c.a[i+j-1] / 10;
				c.a[i+j-1] %= 10;
			}
		}
		c.a[c.a[0]] = temp;
		for(int i = c.a[0]; i > 1; i--)
		if(!c.a[i])
			c.a[0]--;
		else break;
		return c;
	}
};
ostream& operator << (ostream &out, const BigInt &x) {
	for(int i = x.a[0]; i >= 1; i--)
		out<<x.a[i];
	return out;
}

int n;
BigInt g[105];

int main() {
	cin>>n;
	g[1] = 3, g[2] = 8;
	for(int i = 3; i <= n; i++) g[i] = g[i-1]*3-g[i-2];
	cout<<g[n-1]*3;
	return 0;
}

内容概要:本文档是JEDEC发布的标准JESD255(2024年2月版),定义了非易失性SPI闪存存储器(支持QPI和xSPI接口)的可选CRC(循环冗余校验)安全扩展功能。标准涵盖CRC-8和CRC-16两种校验模式,分别适用于8位和16位对齐的数据总线事务,旨在提升数据传输的可靠性,满足汽车电子功能安全(如ASIL-D等级)要求。文档详细规定了CRC的计算方法(采用AUTOSAR多项式)、校验字段格式、事务协议模式(包括DOPI、SOPI、QPI等)、数据分段保护机制、状态与配置寄存器以及错误响应行为,并提供了详细的时序图和数值示例。; 适合人群:从事汽车电子、嵌入式系统、存储控制器或非易失性存储器设计的硬件工程师、固件开发者及符合ISO 26262功能安全要求的研发人员;JEDEC成员企业及相关半导体厂商的技术标准人员。; 使用场景及目标:①为SoC、ASIC、FPGA等芯片设计提供SPI Flash接口的CRC安全扩展规范依据;②指导存储器厂商开发符合功能安全要求的高可靠性SPI闪存产品;③帮助系统集成商实现安全关键应用中的数据完整性验证机制。; 阅读建议:本标准技术细节丰富,涉及多种协议模式和时序规范,建议结合JESD251等相关标准对照阅读,并参考附录中的AUTOSAR CRC算法和数值示例进行验证,重点关注CRC启用后的数据对齐、填充规则及错误标志处理流程。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值