题意:问从每个节点出发,能获得的最大价值。
做法:树形DP。
思路:用两个DFS。
第一个DFS维护出,每个节点,从它的所有子节点返回该点能得到的最大价值(subtree_max_back),它的一个子节点不返回该点可以得到的最大价值(subtree_max_nback)和次大值(subtree_submax_nback),以及不返回的最大价值是当那个点不返回时得到的(subtree_max_nback_id)。
第二个DFS,找出答案。
一个点的答案来至于,所有子节点返回该节点+ 父亲节点不返回该节点 或者 有个子节点不返回该节点+从父亲节点返回该节点。
代码为:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<iostream>
#include<complex>
#include<string>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define nn 100100
#define ll long long
#define ULL unsiged long long
#define pb push_back
#define mod 1000000007
#define inf oxfffffffffff
#define eps 0.00000001
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
int val[nn],head[nn],sz;
struct Edge {
int to, next, len;
Edge(){}
Edge(int to, int next, int len) :to(to), next(next), len(len) {}
}edge[nn * 2];
void add_edge(int x, int y, int z)
{
edge[sz] = Edge(y, head[x], z);
head[x] = sz++;
}
int subtree_max_back[nn], subtree_max_nback[nn];//从所有子树中返回最大值/有一个子节点不返回的最大值
int subtree_submax_nback[nn], subtree_max_nback_id[nn];//有一个子节点不返回的次大值,最大不反回值来至与那个子节点不返回
int ans[nn];//记录答案
void dfs1(int u, int fa)
{
subtree_max_back[u] = val[u];
subtree_max_nback[u] = val[u];
subtree_submax_nback[u] = 0;//初始化,一个节点的最大返回/不返回的最大值为其本身,次大值为0
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v == fa) continue;
dfs1(v, u);
}
for (int i = head[u]; i != -1; i = edge[i].next)//得到每个节点的子节点返回该点的可获得最大价值
{
int v = edge[i].to;
if (v == fa) continue;
int l = edge[i].len;
subtree_max_back[u] += max(0, subtree_max_back[v] - 2 * l);
}
for (int i = head[u]; i != -1; i = edge[i].next)//更新有个子节点不返回该点的最大值和次大值
{
int v = edge[i].to;
if (v == fa) continue;
int l = edge[i].len;
int val = subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l) + max(0, subtree_max_nback[v] - l);
//子节点v不返回时,该节点可得到的最大价值
if (val >= subtree_max_nback[u])//更新最大
{
subtree_submax_nback[u] = subtree_max_nback[u];
subtree_max_nback[u] = val;
subtree_max_nback_id[u] = v;
}
else if (val > subtree_submax_nback[u])//更新次大
subtree_submax_nback[u] = val;
}
}
void dfs2(int u, int fa, int fa_back, int fa_nback)
{
ans[u] = max(subtree_max_back[u] + fa_nback, subtree_max_nback[u] + fa_back);
//该点的最优答案来至于,所有子节点返回该节点+ 父亲节点不返回该节点/有个子节点不返回该节点+从父亲节点返回该节点
for (int i = head[u]; i != -1; i = edge[i].next) // 更新他的儿子节点v
{
int v = edge[i].to;
if (v == fa) continue;
int l = edge[i].len;
int fa, fnb;
fa = fa_back + subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l);
//除去v节点,返回该点的最大值
if (v == subtree_max_nback_id[u])//如果该子节点是该点不返回的最优答案时的不返回节点,用次优值取更新该节点
{
fnb = max(fa_nback + subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l),
fa_back + subtree_submax_nback[u] - max(0, subtree_max_back[v] - 2 * l));
// 从不返回的点的来源来更新该点,(该子节点的父亲节点的父亲节点/该子节点的父亲节点的其他子节点)
}
else//不是得到最优不返回值得子节点的更新
{
fnb = max(fa_nback + subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l),
fa_back + subtree_max_nback[u] - max(0, subtree_max_back[v] - 2 * l));
}
dfs2(v, u, max(0, fa-2*l), max(0, fnb-l));
}
}
int main()
{
int t, kcase = 1;
scanf("%d", &t);
while (t--)
{
int n;
scanf("%d", &n);
sz = 0;
memset(head, -1, sizeof(head));
for (int i = 1; i <= n; i++) scanf("%d", &val[i]);
for (int i = 1; i < n; i++)
{
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add_edge(x, y, z);
add_edge(y, x, z);
}
dfs1(1, 0);
dfs2(1, 1, 0, 0);
printf("Case #%d:\n", kcase++);
for (int i = 1; i <= n; i++) printf("%d\n", ans[i]);
}
return 0;
}