HDU 5834 Magic boy Bi Luo with his excited tree

本文介绍了一种使用树形动态规划的方法来解决从每个节点出发可以获得的最大价值的问题。通过两次DFS遍历,首先计算每个节点从其子节点返回所能获得的最大价值,以及一个子节点不返回的情况。然后,利用这些信息确定每个节点的最佳答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:问从每个节点出发,能获得的最大价值。

做法:树形DP。

思路:用两个DFS。

第一个DFS维护出,每个节点,从它的所有子节点返回该点能得到的最大价值(subtree_max_back),它的一个子节点不返回该点可以得到的最大价值(subtree_max_nback)和次大值(subtree_submax_nback),以及不返回的最大价值是当那个点不返回时得到的(subtree_max_nback_id)。

第二个DFS,找出答案。

一个点的答案来至于,所有子节点返回该节点+ 父亲节点不返回该节点 或者 有个子节点不返回该节点+从父亲节点返回该节点。

代码为:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<iostream>
#include<complex>
#include<string>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define nn 100100
#define ll long long
#define ULL unsiged long long
#define pb push_back
#define mod 1000000007
#define inf oxfffffffffff
#define eps 0.00000001
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1

int val[nn],head[nn],sz;
struct Edge {
	int to, next, len;
	Edge(){}
	Edge(int to, int next, int len) :to(to), next(next), len(len) {}
}edge[nn * 2];
void add_edge(int x, int y, int z)
{
	edge[sz] = Edge(y, head[x], z);
	head[x] = sz++;
}
int subtree_max_back[nn], subtree_max_nback[nn];//从所有子树中返回最大值/有一个子节点不返回的最大值
int subtree_submax_nback[nn], subtree_max_nback_id[nn];//有一个子节点不返回的次大值,最大不反回值来至与那个子节点不返回
int ans[nn];//记录答案
void dfs1(int u, int fa)
{
	subtree_max_back[u] = val[u];
	subtree_max_nback[u] = val[u];
	subtree_submax_nback[u] = 0;//初始化,一个节点的最大返回/不返回的最大值为其本身,次大值为0
	for (int i = head[u]; i != -1; i = edge[i].next)
	{
		int v = edge[i].to;
		if (v == fa) continue;
		dfs1(v, u);
	}
	for (int i = head[u]; i != -1; i = edge[i].next)//得到每个节点的子节点返回该点的可获得最大价值
	{
		int v = edge[i].to;
		if (v == fa) continue;
		int l = edge[i].len;
		subtree_max_back[u] += max(0, subtree_max_back[v] - 2 * l);
	}

	for (int i = head[u]; i != -1; i = edge[i].next)//更新有个子节点不返回该点的最大值和次大值
	{
		int v = edge[i].to;
		if (v == fa) continue;
		int l = edge[i].len;
		int val = subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l) + max(0, subtree_max_nback[v] - l);
		//子节点v不返回时,该节点可得到的最大价值
		if (val >= subtree_max_nback[u])//更新最大
		{
			subtree_submax_nback[u] = subtree_max_nback[u];
			subtree_max_nback[u] = val;
			subtree_max_nback_id[u] = v;
		}
		else if (val > subtree_submax_nback[u])//更新次大
			subtree_submax_nback[u] = val;
	}
}

void dfs2(int u, int fa, int fa_back, int fa_nback)
{
	ans[u] = max(subtree_max_back[u] + fa_nback, subtree_max_nback[u] + fa_back);
	//该点的最优答案来至于,所有子节点返回该节点+ 父亲节点不返回该节点/有个子节点不返回该节点+从父亲节点返回该节点
	for (int i = head[u]; i != -1; i = edge[i].next) // 更新他的儿子节点v
	{
		int v = edge[i].to;
		if (v == fa) continue;
		int l = edge[i].len;
		int fa, fnb;
		fa = fa_back + subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l);
		//除去v节点,返回该点的最大值
		if (v == subtree_max_nback_id[u])//如果该子节点是该点不返回的最优答案时的不返回节点,用次优值取更新该节点
		{
			fnb = max(fa_nback + subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l),
				fa_back + subtree_submax_nback[u] - max(0, subtree_max_back[v] - 2 * l));
			// 从不返回的点的来源来更新该点,(该子节点的父亲节点的父亲节点/该子节点的父亲节点的其他子节点)
		}
		else//不是得到最优不返回值得子节点的更新
		{
			fnb = max(fa_nback + subtree_max_back[u] - max(0, subtree_max_back[v] - 2 * l),
				fa_back + subtree_max_nback[u] - max(0, subtree_max_back[v] - 2 * l));
		}
		dfs2(v, u, max(0, fa-2*l), max(0, fnb-l));
	}
}
int main()
{
	int t, kcase = 1;
	scanf("%d", &t);
	while (t--)
	{
		int n;
		scanf("%d", &n);
		sz = 0;
		memset(head, -1, sizeof(head));
		for (int i = 1; i <= n; i++) scanf("%d", &val[i]);
		for (int i = 1; i < n; i++)
		{
			int x, y, z;
			scanf("%d%d%d", &x, &y, &z);
			add_edge(x, y, z);
			add_edge(y, x, z);
		}
		dfs1(1, 0);
		dfs2(1, 1, 0, 0);
		printf("Case #%d:\n", kcase++);
		for (int i = 1; i <= n; i++) printf("%d\n", ans[i]);
	}
	return 0;
}


内容概要:该论文深入研究了液压挖掘机动臂下降势能回收技术,旨在解决传统液压挖掘机能耗高的问题。提出了一种新型闭式回路势能回收系统,利用模糊PI自整定控制算法控制永磁无刷直流电动机,实现了变转速容积调速控制,消除了节流和溢流损失。通过建立数学模型和仿真模型,分析了不同负载下的系统性能,并开发了试验平台验证系统的高效性和节能效果。研究还涵盖了执行机构能量分布分析、系统元件参数匹配及电机控制性能优化,为液压挖掘机节能技术提供了理论和实践依据。此外,通过实验验证,该系统相比传统方案可降低28%的能耗,控制系统响应时间缩短40%,为工程机械的绿色化、智能化发展提供了关键技术支撑。 适合人群:从事工程机械设计、制造及维护的工程师和技术人员,以及对液压系统节能技术感兴趣的科研人员。 使用场景及目标:①理解液压挖掘机闭式回路动臂势能回收系统的原理和优势;②掌握模糊PI自整定控制算法的具体实现;③学习如何通过理论建模、仿真和实验验证来评估和优化液压系统的性能。 其他说明:此研究不仅提供了详细的理论分析和数学建模,还给出了具体的仿真代码和实验数据,便于读者在实际工作中进行参考和应用。研究结果表明,该系统不仅能显著提高能源利用效率,还能延长设备使用寿命,降低维护成本,具有重要的工程应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值