关闭

HDU 5534 (多重背包)

155人阅读 评论(0) 收藏 举报
分类:

题意是让你构造一棵树使得这棵树的价值最大。树的价值等于节点价值的和,节点的价值等于度数i的函数f(i)。

首先n个点的树只需要总度数为2×n-2并且每个点的度数都为正那么这棵树肯定存在。

很容易想到的是用一个二维的DP去搞,DP[i][j]表示已经搞了i个点总共用j度的最大价值。但是这样要枚举三重循环复杂度太高了。

可以把每个点预先都放上1度,然后就变成n-2度的总度数最大价值是多少。注意放了1度以后函数会发生变化,现在的f(i)相当与之前的f(i+1),但是我们已经预先加了f(1),所以现在的f(i) = 之前的f(i+1)-之前的f(1)。

然后可以看成多重背包了。

#include <bits/stdc++.h>
using namespace std;
#define maxn 2111
const long long INF = 1e8;

long long dp[maxn];
long long f[maxn];
int n;

int main () {
    //freopen ("in", "r", stdin);
    int t;
    scanf ("%d", &t);
    while (t--) {
        scanf ("%d", &n);
        for (int i = 1; i < n; i++) {
            scanf ("%lld", &f[i]);
        }
        long long ans = f[1]*n;
        int gg = f[1];
        for (int i = 0; i < n-1; i++) {
            f[i] = f[i+1]-gg;
        }
        for (int i = 0; i <= n-2; i++) dp[i] = -INF;
        dp[0] = 0;
        for (int i = 1; i <= n-2; i++) { //枚举度数(最多n-2度) 相当于物品
            for (int j = 0; j <= n-2; j++) { //枚举总度数 相当于背包容量
                if (i+j <= n-2)
                    dp[j+i] = max (dp[j+i], dp[j]+f[i]);
            }
        }
        printf ("%lld\n", ans+dp[n-2]);
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:101058次
    • 积分:5431
    • 等级:
    • 排名:第5109名
    • 原创:463篇
    • 转载:0篇
    • 译文:0篇
    • 评论:14条
    最新评论