关闭

TJU4111-Binomial efficient(数论)

标签: acmhdoj数论
336人阅读 评论(0) 收藏 举报
分类:

对2^32取模-->直接用unsigned long,运算过程中 溢出就等同于对2^32取模,不必再特殊处理。

首先用筛选法打出素数表,然后对n!,m!,(n-m)!进行质因数分解。

把组合数用底数和指数的形式表达出来,最后用快速幂计算相加即可。

#include <cstdio>
#include <cstring>
typedef long long LL;
typedef unsigned int uint;

using namespace std;

const int N=1000000;

//v为素数表,a为底数,b为指数
int a[N+10],b[N+10],v[N+10];
int cnt;

uint quickpow(uint x,int y)
{
    uint res=1;
    for(;y;y>>=1)
    {
        if(y&1) res=res*x;
        x=x*x;
    }
    return res;
}

void Init()
{
    int i,j;
    memset(v,0,sizeof(v));
    cnt=0;
    for(i=2;i<=N;i++)
    {
        if(v[i]==0)
        {
            a[cnt++]=i;
            for(j=i+i;j<=N;j+=i) v[j]=1;
        }
    }
}


void work()
{
    int i,j,n,m;
    uint ans=1;
    scanf("%d%d",&n,&m);

    for(i=0;i<cnt;i++)
        if(n>=a[i])
        {
            b[i]=0;
            for(LL j=a[i]; j<=n;   j*=(LL)a[i]) b[i]+=n/j;
            for(LL j=a[i]; j<=m;   j*=(LL)a[i]) b[i]-=m/j;
            for(LL j=a[i]; j<=n-m; j*=(LL)a[i]) b[i]-=(n-m)/j;
        }
        else break;
    for(j=0;j<i;j++) ans=ans*quickpow(a[j],b[j]);
    printf("%u\n",ans);
}


int main()
{
    int T;
    Init();
    scanf("%d",&T);
    while(T--) work();
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:25763次
    • 积分:1043
    • 等级:
    • 排名:千里之外
    • 原创:81篇
    • 转载:3篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论