关闭

Visual Tracking Dataset UCSB

354人阅读 评论(0) 收藏 举报
分类:

来源:Four Eyes Lab in University of California, Santa Barbara
文章:Evaluation of Interest Point Detectors and Features Descriptors for Visual Tracking, IJCV11

数据集

Four Eyes Lab公开了他们用于基于局部特征点跟踪的视频数据集。该数据集有96段视频,共6889 帧,6个不同纹理的图片对象,每个对象都以16种不同的方式进行拍摄,图像分辨率为640*480。

这里写图片描述

拍摄的方式有

  1. 随意拍摄(Unconstrained);
  2. 原地摆动镜头(Panning);
  3. 垂直平面旋转镜头(Rotation);
  4. 透视变换(Perspective distortion),从垂直拍摄转到平面拍摄;
  5. 拍摄距离变化(Zoom);
  6. 运动模糊(Motion blur);
  7. 光照突然变化(Static lighting);
  8. 光照平滑变化(Dynamic lighting)。

这里写图片描述

数据集的ground truth是homography,标注方式为:专门制作了一个特定尺寸的树脂玻璃架,玻璃架上四个角都装上了红色小球,放mark图像的四周都贴上了特殊纹理。视频图像中很容易检测到4个小球的位置,并且已知各小球之间的真实距离,所以能计算出图像到真实物理空间的单应矩阵。
groundtruth_coordinateframe.h文件给出了物理空间到图像空间的计算方式。

文章内容

文章侧重于评测各特征点,所以跟踪算法统一采用RANSAC,其中特征点包括:

  • harris角点,1988
  • GFTT,1994
  • SIFT,2004
  • SURF,2006
  • FAST,2006
  • CenSurE,2008
  • Keypoint Classification with Ferns or RandomForest,2006

文章对比了特征点的很多性质:repeatability、time、scale change、rotation、motion blur…,比较有用的结论有:

  1. SURF特征点用于跟踪能较好处理运动模糊;
  2. SIFT可以降低维度,而不影响精度;
  3. 斑点检测的重复性比角点高。
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:18408次
    • 积分:428
    • 等级:
    • 排名:千里之外
    • 原创:24篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    文章分类
    最新评论