前言小叙
机器学习,Machine Learning走进我的视野范围,过程还挺有意思。第一次听到这个词还是在Blacksburg的公寓,王俊鹏向我介绍了计算机研究领域的几大方向,其中就有机器学习,人工智能。给我举得例子就是语义识别,不断给计算机喂书,然后拿出来一本计算机从来没有见过的书,计算机便可以知道这句话的意思,表达出来。这个月初,在Prof. Jin 的推荐之下,开始了MachineLeanring的学习.前几天打电话给深圳的陈佳,他电话中特意问道,你知道不知道机器学习,我最近在研究,真是无巧不成书,想来最近很火爆,我自然不能落后,要迎头赶上。
这里给大家介绍一下我入门的资料,其实不多,一个是Coursera上面Andrew的课程,不过我觉得课程太拖沓,所以找到了Rachel Zhang的csdn博客,她记下来的课程笔记还是比较实用,因为之前重新复习了线性代数和微积分,所以看笔记琢磨一下还是可以懂80%。
然后是cnblogs的subconscious,用白话解释一些概念,读起来会有一个大致的把握。然后在YouTube上看了MorvanZhou的视频介绍,视频精简短小,适合我这种碎片化的学习。
然后,今天我要介绍的是我设计的一个识别骰子点数识别的算法。我们一款游戏开奖需要用到投掷骰子根据点数决定结果,但是我们的工作人员有时候会输错骰子的点数,导致错误,所以我们需要找到一种可以识别骰子点数的程序,来及时纠正我们工作人员的输入错误,在适当的时间给出提示。那么,如何寻找到这样一种识别算法呢?在我看完ML神经网络模型的时候,我恍然大悟,我要找的就是他。
这里给大家介绍一下我入门的资料,其实不多,一个是Coursera上面Andrew的课程,不过我觉得课程太拖沓,所以找到了Rachel Zhang的csdn博客,她记下来的课程笔记还是比较实用,因为之前重新复习了线性代数和微积分,所以看笔记琢磨一下还是可以懂80%。
然后是cnblogs的subconscious,用白话解释一些概念,读起来会有一个大致的把握。然后在YouTube上看了MorvanZhou的视频介绍,视频精简短小,适合我这种碎片化的学习。
然后,今天我要介绍的是我设计的一个识别骰子点数识别的算法。我们一款游戏开奖需要用到投掷骰子根据点数决定结果,但是我们的工作人员有时候会输错骰子的点数,导致错误,所以我们需要找到一种可以识别骰子点数的程序,来及时纠正我们工作人员的输入错误,在适当的时间给出提示。那么,如何寻找到这样一种识别算法呢?在我看完ML神经网络模型的时候,我恍然大悟,我要找的就是他。

本文是神经网络教程的第一部分,讲解如何利用神经网络识别骰子的点数。介绍了神经网络的基本概念,将其比喻为复杂化的逻辑回归,并通过公式阐述了神经网络的结构。文章还提及训练神经网络采用反向传播算法,后续章节会涉及代码实现和仿真测试。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



