Tutorial教程:利用神经网络识别骰子点数(1)

本文是神经网络教程的第一部分,讲解如何利用神经网络识别骰子的点数。介绍了神经网络的基本概念,将其比喻为复杂化的逻辑回归,并通过公式阐述了神经网络的结构。文章还提及训练神经网络采用反向传播算法,后续章节会涉及代码实现和仿真测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言小叙

机器学习,Machine Learning走进我的视野范围,过程还挺有意思。第一次听到这个词还是在Blacksburg的公寓,王俊鹏向我介绍了计算机研究领域的几大方向,其中就有机器学习,人工智能。给我举得例子就是语义识别,不断给计算机喂书,然后拿出来一本计算机从来没有见过的书,计算机便可以知道这句话的意思,表达出来。这个月初,在Prof. Jin 的推荐之下,开始了MachineLeanring的学习.前几天打电话给深圳的陈佳,他电话中特意问道,你知道不知道机器学习,我最近在研究,真是无巧不成书,想来最近很火爆,我自然不能落后,要迎头赶上。
这里给大家介绍一下我入门的资料,其实不多,一个是Coursera上面Andrew的课程,不过我觉得课程太拖沓,所以找到了Rachel Zhang的csdn博客,她记下来的课程笔记还是比较实用,因为之前重新复习了线性代数和微积分,所以看笔记琢磨一下还是可以懂80%。
然后是cnblogs的subconscious,用白话解释一些概念,读起来会有一个大致的把握。然后在YouTube上看了MorvanZhou的视频介绍,视频精简短小,适合我这种碎片化的学习。
然后,今天我要介
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MrCharles

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值