MSE(3)

原创 2011年01月09日 15:49:00

2006年被录取的软件工程双证同学请进讨论

引用asamiya  新手上路

我对MSE 的小小总结及看法

我是2003年调济到南方一所高校的双证(研究生毕业证+学位证)MSE 。针对于这样一个新事物。我查了很多MSE 的资料,上了很多论坛,也问了很多大企、外资的人事部。最后我得出了一点小小总结及看法:
一、双证MSE 的生源质量:不比计算机工学硕士差!
1)在生源方面,大多数高校的双证MSE 都是与工学硕士同样的录取标准。
2)毕业后所得到的证书和工学硕士一样,国家承认,与工学硕士处于同一层次,同样的待遇和就业推荐等。3)所学的课程更实用、实在。
二、MSE 的风险大。
  特别是对于双证硕士来说,考研的分数完全可以读计算机工学硕士。但到目前为止,全国还没有一个MSE 毕业,所以现在谁也知道两年后的MSE
在社会上影响会是怎么。不过有一点可以肯定的就是,非学历教育(没有毕业证)的MSE 门坎太低了,而且人数相当多。这样必然会降低社
会对MSE 的认可度。可以假设,如果教育部一开始就是以全国统考的方式,计算机的标准来录取MSE ,相信大家现在也不会为MSE 的社会认可度而争论
了,最起码也不会觉得MSE 不如计算机硕士。但教育部没有那么做,也许有他的理由。但不管怎么样,我一直认为只要是金子,就会发光的。什么都是靠自己努力。
三、MSE 是个趋势。
  随着自费研究生的普及,MSE 的价格劣势也慢慢地不那么明显。再加上几年后社会对MSE 的了解和现在在读的那一批MSE 精英进入社会。相信几年后MSE 也将会是一些优秀本科生考研的第一选择。虽然说一些垃圾MSE 也带来的很大的负面影响,但是看看现在的工学硕士也还不是有那么多垃圾吗?
四、MSE 的选择。
  现在的MSE 有两种,一种是有学历(毕业证)的,必须要参加全国研究生考试,且达到复试标准。另一种是没学历的,只能拿到学位证,通过工程硕士联考或是参加统考略低于复试标准即可入学。而在中国社会,毕业证恰恰是最重要的。中国社会非常认可毕业证,绝大多数企业
人事部都表示:“一定要有毕业证我们才承认你是研究生,至于什么学位(理学、工学、管理学……)我们不在乎。对于只有硕士学位证但没
有研究生毕业证的人,我们只认可你是本科,但可以享受硕士的待遇。”因此这两种MSE 在中国是有着本质的区别。所以对于考研上了复试线的同学来说,MSE 要有学历的才值得读!特别是在调济中一定要注意这一点。当然我不反对通过在职读MSE 来提高自己的能力。

(转)SSE,MSE,RMSE,R-square指标讲解

SSE(和方差、误差平方和):The sum of squares due to error MSE(均方差、方差):Mean squared error RMSE(均方根、标准差):Root m...

图像质量评估指标 SSIM / PSNR / MSE

图像质量评估指标 SSIM / PSNR / MSE

[木马]不释放资源到本地文件系统,直接运行其内嵌exe程序 卡巴竟然报毒,MSE正常

可以运行,但是杀软报毒,源码主要收集于网络,非自创,加工组合而已:   #include "stdafx.h" #include "resource.h" typedef IMAGE_SEC...

Mean squared error MSE即方差

MSE是网络的性能函数,网络的均方误差,叫"Mean Square Error"。比如有n对输入输出数据,每对为[Pi,Ti],i=1,2,...,n.网络通过训练后有网络输出,记为Yi。   在...

FOJ Problem 1075 分解素因子 (筛法求素数Problem 1075 分解素因子 Accept: 1650 Submit: 3102 Time Limit: 1000 mSe)

Problem 1075 分解素因子 Accept: 1650 Submit: 3102 Time Limit: 1000 mSec Memory Limit : 32768 KB ...

【Spark Mllib】性能评估 ——MSE/RMSE与MAPK/MAP

推荐模型评估MSE/RMSE均方差(MSE),就是对各个实际存在评分的项,pow(预测评分-实际评分,2)的值进行累加,在除以项数。而均方根差(RMSE)就是MSE开根号。我们先用ratings生成(...

MSE(6)

关于2006年西北工业大学的软件与微电子学院探讨 985大学就业分档排名   影响大学就业的因素很多,学生自身素质能力、学校声誉、专业实力、地理位置是主要的。本文主要对一些热门专业作排名,冷门学科...

模式识别(Pattern Recognition)学习笔记(十)--最小平方误差判别(MSE)

上篇介绍了样本线性可分下的Fisher判别,这篇开始介绍样本不可分下的判别--MSE。       最小平方误差(又叫最小二乘误差)判别是针对样本线性不可分的情况来讨论的,因此当样本不可分时,就有可...

最小平方误差判别 MSE

原文:http://blog.csdn.net/xiaowei_cqu 最小平方误差判别准则函数 对于上一节提出的不等式组: 在线性不可分的情况下,不等式组不可能同时满足。一种直观的想法...

(转)SSE,MSE,RMSE,R-square指标讲解

SSE(和方差、误差平方和):The sum of squares due to error MSE(均方差、方差):Mean squared error RMSE(均方根、标准差):Root m...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:MSE(3)
举报原因:
原因补充:

(最多只允许输入30个字)