关闭

《集体智慧编程》笔记2.2---第二章--欧几里得距离和皮尔森相关系数代码(.py)

标签: 集体智慧编程python
150人阅读 评论(0) 收藏 举报
分类:

这里主要介绍 欧几里得距离 和 皮尔森相关系数

  1. 欧几里得距离(recomtest.py)
    这里写图片描述

recomtest.py:

critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 
 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 
 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 
 'You, Me and Dupree': 3.5}, 
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
 'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
 'The Night Listener': 4.5, 'Superman Returns': 4.0, 
 'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 
 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 2.0}, 
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
from math import sqrt

# Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,user1,user2):
    si={}
    for item in prefs[user1]:
        if item in prefs[user2]:
            si[item]=1
    # if they are no ratings in common, return 0
    if len(si)==0:
        return 0
    sum_s=sum([pow(prefs[user1][item]-prefs[user2][item],2)
                      for item in prefs[user1] if item in prefs[user2]])
    return 1/(1+sqrt(sum_s))

接下来计算Lisa Rose和Gene Seymour的相似度。
我是用Notepad++打开代码,然后直接在Notepad++里用命令行的方式运行的。
(打开cmd的方式视notepad++版本而定:
较早期的版本打开方式:菜单栏“运行”/Open current die cmd;
后面的版本是 :文件/打开所在文件夹/命令行)

具体cmd运行见下面截图:
这里写图片描述

2、皮尔森相关系数(recomtest_p.py)
这里写图片描述

recomtest_p.py:

critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 
 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 
 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 
 'You, Me and Dupree': 3.5}, 
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
 'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
 'The Night Listener': 4.5, 'Superman Returns': 4.0, 
 'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 
 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 2.0}, 
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

from math import sqrt
# Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs,p1,p2):
  # Get the list of mutually rated items
  si={}
  for item in prefs[p1]:
    if item in prefs[p2]:
        si[item]=1

  # if they are no ratings in common, return 0
  if len(si)==0: 
    return 0

  # Sum calculations
  n=len(si)

  # Sums of all the preferences
  sum1=sum([prefs[p1][it] for it in si])
  sum2=sum([prefs[p2][it] for it in si])

  # Sums of the squares
  sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
  sum2Sq=sum([pow(prefs[p2][it],2) for it in si])

  # Sum of the products
  pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])

  # Calculate r (Pearson score)
  num=pSum-(sum1*sum2/n)
  den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
  if den==0:
      return 0

  r=num/den

  return r

接下来计算Lisa Rose和Gene Seymour的相似度。
具体cmd运行见下面截图:
这里写图片描述

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:341次
    • 积分:42
    • 等级:
    • 排名:千里之外
    • 原创:4篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档