求无向连通图的割点

转载 2015年07月09日 16:20:26

           www.cnblogs.com/en-heng/p/4002658.html

割点与连通度

在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point)。一个没有关节点的连通图称为重连通图(biconnected graph)。若在连通图上至少删去k 个顶点才能破坏图的连通性,则称此图的连通度为k。

关节点和重连通图在实际中较多应用。显然,一个表示通信网络的图的连通度越高,其系统越可靠,无论是哪一个站点出现故障或遭到外界破坏,都不影响系统的正常工作;又如,一个航空网若是重连通的,则当某条航线因天气等某种原因关闭时,旅客仍可从别的航线绕道而行;再如,若将大规模的集成电路的关键线路设计成重连通的话,则在某些元件失效的情况下,整个片子的功能不受影响,反之,在战争中,若要摧毁敌方的运输线,仅需破坏其运输网中的关节点即可。

简单的例子

(a)中G7 是连通图,但不是重连通图。图中有三个关节点A、B 和G 。若删去顶点B 以及所有依附顶点B 的边,G7 就被分割成三个连通分量{A、C、F、L、M、J}、{G、H、I、K}和{D、E}。类似地,若删去顶点A 或G 以及所依附于它们的边,则G7 被分割成两个连通分量。

求割点的方法

暴力的方法:

  • 依次删除每一个节点v
  • 用DFS(或BFS)判断还是否连通
  • 再把节点v加入图中

若用邻接表(adjacency list),需要做V次DFS,时间复杂度为O(V(V+E))。(题外话:我在面试实习的时候,只想到暴力方法;面试官提示只要一次DFS就就可以找到割点,当时死活都没想出来)。

有关DFS搜索树的概念

在介绍算法之前,先介绍几个基本概念

  • DFS搜索树:用DFS对图进行遍历时,按照遍历次序的不同,我们可以得到一棵DFS搜索树,如图(b)所示。
  • 树边:(在[2]中称为父子边),在搜索树中的实线所示,可理解为在DFS过程中访问未访问节点时所经过的边。
  • 回边:(在[2]中称为返祖边后向边),在搜索树中的虚线所示,可理解为在DFS过程中遇到已访问节点时所经过的边。

基于DFS的算法

该算法是R.Tarjan发明的。观察DFS搜索树,我们可以发现有两类节点可以成为割点:

  1. 对根节点u,若其有两棵或两棵以上的子树,则该根结点u为割点;
  2. 对非叶子节点u(非根节点),若其子树的节点均没有指向u的祖先节点的回边,说明删除u之后,根结点与u的子树的节点不再连通;则节点u为割点。

对于根结点,显然很好处理;但是对于非叶子节点,怎么去判断有没有回边是一个值得深思的问题。

我们用dfn[u]记录节点u在DFS过程中被遍历到的次序号,low[u]记录节点u或u的子树通过非父子边追溯到最早的祖先节点(即DFS次序号最小),那么low[u]的计算过程如下:

low[u]={min{low[u], low[v]}min{low[u], dfn[v]}(u,v)(u,v)vu

下表给出图(a)对应的dfn与low数组值。

i 0 1 2 3 4 5 6 7 8 9 10 11 12
vertex A B C D E F G H I J K L M
dfn[i] 1 5 12 10 11 13 8 6 9 4 7 2 3
low[i] 1 1 1 5 5 1 5 5 8 2 5 1 1

对于情况2,当(u,v)为树边且low[v] >= dfn[u]时,节点u才为割点。该式子的含义:以节点v为根的子树所能追溯到最早的祖先节点要么为v要么为u。

代码实现

void dfs(int u)

{

//记录dfs遍历次序

static int counter = 0;

//记录节点u的子树数

int children = 0;

ArcNode *p = graph[u].firstArc;visit[u] = 1;//初始化dfn与low

dfn[u] = low[u] = ++counter;

for(; p != NULL; p = p->next)

{

int v = p->adjvex;//节点v未被访问,则(u,v)为树边

if(!visit[v]) {

children++;parent[v] = u;

dfs(v);

low[u] = min(low[u], low[v]);

//case (1)

if(parent[u] == NIL && children > 1)

printf("articulation point: %d\n", u);

//case (2)

if(parent[u] != NIL && low[v] >= dfn[u])

printf("articulation point: %d\n", u);

}//节点v已访问,则(u,v)为回边

else if(v != parent[u])

low[u] = min(low[u], dfn[v]);

}

}

}

采用邻接表存储图,该算法的时间复杂度应与DFS相同,为O(V+E)

参考资料

[1] see xidian, 图的连通性—关节点和重连通分量.
[2] byvoid, 图的割点、桥与双连通分支.
[3] GeeksforGeeks, Articulation Points (or Cut Vertices) in a Graph.

相关文章推荐

求无向连通图的割点(图论)

1. 割点与连通度 在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point)。一个没有关节点...

用Tarjan算法求无向连通图割点&&割边

/** 割点割边挺好理解的,割点就是一个无向连通图,把其中一个点 挖掉剩下的图不连通,割边就是把一条边砍掉不连通 比如:有一个通信网络,要求一颗炸弹,把这个通信网络搞得不连通...
  • zcube
  • zcube
  • 2015年09月05日 10:11
  • 2090

求无向连通图的最小割点详解以及java源代码实现

部分内容转载自http://www.cnblogs.com/en-heng/p/4002658.html点击打开链接 1.相关概念 无向连通图:无向图是连通的,当且仅当从任意节点开始的深度优先搜索...

无向连通图求割点和桥

无向连通图中,如果删除某点后,图变成不连通,则称该点为割点。 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥思路和有向图求强连通分量类似,在深度优先遍历整个图过程中形成的一棵搜索树. d...

无向连通图求割点(tarjan算法去掉改割点剩下的联通分量数目)

poj2117 Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions...

无向连通图中求割点集

割点就是去除这个点 以及和这个点相连接的边则会使连通分量不连通 。 最简单的算法是依次尝试所有点看去除该点和所对应的边 看一次dfs是否能遍历整个图 。不过时间复杂度较高。 下面的算法是基于 ta...

poj 1144 Network tarjan求无向连通图的割点个数

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting se...

无向连通图的割点与割边

无向连通图的割点与割边:最简单的方法:要判断一个点是否为割点,先把这个点和所有和它连接的边从图中去掉,再遍历下剩余的图,看看是否为连通的即可。这只在单独判断某一点(边)时才会选用。 割点将一个图分成了...

计算无向连通图的割点和割边

本总结是是个人为防止遗忘而作,不得转载和商用。 题目          给定某无向连通图G,若删除某节点X和已经与X相邻接的所有边时,图G变成非连通图,则节点X称为图G的割点。         ...

无向连通图的割点、桥

无向连通图的割点、桥 泳裤王子原创,转载请注明出处 http://blog.csdn.net/tclh123/article/details/6705392 预备知识:        割点集合 ...
  • tclh123
  • tclh123
  • 2011年08月21日 00:40
  • 6852
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:求无向连通图的割点
举报原因:
原因补充:

(最多只允许输入30个字)