数学与算法随想

部署运行你感兴趣的模型镜像

函数是无穷维的向量。平面几何里一大堆定义、定理、等式、不等式,在函数空间里都是适用的。比如著名的施瓦兹-柯西不等式,不过是平面三角里|cos(t)| <= 1 的推广而已。

---------------------------------------

微积分是解决“见微知著”、“管中窥豹”的问题。通过研究局部的简单问题,把握全局性的复杂问题。其间的桥梁就是牛-莱公式。在外微分形式下,奥高公式和斯托克斯公式都是牛-莱公式,也就是说,1、2、3维牛-莱公式,用一个形式简单的格林公式可以把大学微积分课程里全部内容给概括出来。

微分方程是描述那个“局部的简单问题”的方程,其本质是一个局部规则的描述。因为可以做很多线性的假设,所以这个局部规则相对而言容易找到,因此很多学科能列出微分方程。但是只有解微分方程才能把握整体性质,而解微分方程不容易。

林群院士说,每一门学科都对应一个微分方程。

局部的问题好解决,而大量局部问题解决了,其结果积累起来,就能达成全局目标。算法就是这样。特别是递归和迭代算法,一个递归/迭代过程本身就是一个局部规则,其意义跟微分方程是一样的。所以很多本来是在微分方程理论里发现的定理,比如不动点定理,也用在了计算理论中。计算递归算法复杂度也要可能用到微分方程理论。

-----------------------------------------

两个向量的点积,等于一个向量在另一个向量上的投影长度,等于两个向量对应坐标分量之积的代数和。这件事情太奇妙了,即使很容易可以证明,我还是觉得很奇妙,怎么会有这样妙的性质呢?

一个向量对应一条有向线段,一组向量对应一组有向线段。一个非奇异矩阵呢,是否可以说对应一个n维空间的一组向量,而这组向量构成一个坐标系。一个向量乘一个矩阵,就是求这个向量在那个矩阵所代表的新的坐标系各个轴线上的投影组成的新的向量。也可以说,矩阵是一个向量变换器。对于一个非奇异矩阵来说,有些向量特别有意思,它们在这个坐标系里的投影组成的新的向量,正好是原来向量的lambda倍。也就是说,经过矩阵这个向量变换器的变换,原来的向量跟乘了个实数lambda没啥分别。所以这个lambda就刻画了这个矩阵的某种特征,叫做矩阵的特征值。

矩阵乘矩阵,就是一组向量在另一组向量张成的坐标系里的投影值。正交矩阵,就是这样的一个矩阵,它自己在自己身上投影,投影出来的结果是一个单位矩阵I。什么时候才会出现这种情况呢?当然只有这个矩阵所代表的向量组里,所有向量两两垂直,才会出现在这种情况。所以叫“正交矩阵”,名字不是随便起的。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

<think>好的,我现在需要处理用户关于查找“代码随想录”相关资源或内容的请求。用户提到了算法题解、数据结构和学习笔记。首先,我应该回顾用户提供的引用内容,看看哪些引用代码随想录相关。 查看引用部分,引用[1]、[3]、[4]都提到了代码随想录。引用[1]详细介绍了代码随想录在LeetCode题目讲解中的系统性和学习路径,包括学习顺序和资源链接。引用[3]提供了具体的算法实现示例,如有效字母异位词和赎金信问题,这可能属于算法题解部分。引用[4]提到了一刷代码随想录和快慢指针的内容,这可能涉及学习笔记和具体算法技巧。 接下来,我需要将这些信息组织成一个结构清晰的回答。根据用户的要求,回答需要分点说明资源类型,如系统算法题解、数据结构讲解、学习笔记技巧等,每个部分引用相关的内容,并在末尾添加引用标识。同时,需要确保使用中文,行内公式用$...$,独立公式用$$...$$,但根据用户的问题,可能数学公式的使用不多,但如果有的话需要正确应用。 然后生成相关问题,这些问题应该围绕代码随想录的资源类型、学习路径、具体算法实现等展开,例如如何高效使用该资源,如何结合数据结构学习等。 需要确保回答真实可靠,引用正确。例如,引用[1]中的学习路径和资源链接,引用[3]中的代码示例,引用[4]中的学习笔记内容。 最后,检查格式是否符合要求,没有使用任何markdown,段落之间用空行分隔,引用标识自然添加。确保没有提到任何关于思考过程的内容,保持回答的专业和直接。</think>关于代码随想录的资源学习内容,以下整理可供参考: ### 一、系统算法题解数据结构讲解 代码随想录以**循序渐进的学习路径**为核心,从基础数据结构到高阶算法进行分类讲解。例如: - **数据结构学习路径**:数组→链表→哈希表→字符串→栈队列→树→回溯→贪心→动态规划→图论→高级数据结构[^1] - **经典题目覆盖**:包含高频面试题,例如快速排序的实现优化、有效字母异位词判断(使用数组替代哈希表)[^3] - **时间复杂度分析**:如暴力法求平方根的时间复杂度为$O(x)$[^2] ### 二、学习笔记技巧 1. **快慢指针应用**:常用于链表操作环形检测,通过双指针技巧降低时间复杂度[^4] 2. **代码规范建议**:控制语句(如`while`、`if`)后需添加空格,提升代码可读性[^5] 3. **实战代码示例**:例如赎金信问题中通过数组统计字符频率,实现$O(n)$时间复杂度 ### 三、资源获取方式 - **官方文档**:可访问[代码随想录网站](https://programmercarl.com)查看完整题解 - **GitHub开源项目**:代码题解仓库位于[leetcode-master](https://github.com/youngyangyang04/leetcode-master)[^1]
评论 19
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值