精度 强制转换 浮点数

原创 2015年11月18日 11:09:39
int main(){
char *a0="0.89";
  char *a1="1.89";
  char *a2="2.89";
  char *a3="3.89";
  char *a4="4.89";
  char *a5="5.89";
  char *a6="6.89";
  char *a7="7.89";
  char *a8="8.89";
  char *a9="9.89";
  
  long A0=atof(a0)*100;
  long A1=atof(a1)*100;
  long A2=atof(a2)*100;
  long A3=atof(a3)*100;
  long A4=atof(a4)*100;
  long A5=atof(a5)*100;
  long A6=atof(a6)*100;
  long A7=atof(a7)*100;
  long A8=atof(a8)*100;
  long A9=atof(a9)*100;
  
  


  printf("%.16lf\n",atof(a0));
  printf("%.16lf\n",atof(a1));
  printf("%.16lf\n",atof(a2));
  printf("%.16lf\n",atof(a3));
  printf("%.16lf\n",atof(a4));
  printf("%.16lf\n",atof(a5));
  printf("%.16lf\n",atof(a6));
  printf("%.16lf\n",atof(a7));
  printf("%.16lf\n",atof(a8));
  printf("%.16lf\n",atof(a9));
  
  printf("*******\n");
 
  printf("%.16lf\n",atof(a0)*100);
  printf("%.16lf\n",atof(a1)*100);
  printf("%.16lf\n",atof(a2)*100);
  printf("%.16lf\n",atof(a3)*100);
  printf("%.16lf\n",atof(a4)*100);
  printf("%.16lf\n",atof(a5)*100);
  printf("%.16lf\n",atof(a6)*100);
  printf("%.16lf\n",atof(a7)*100);
  printf("%.16lf\n",atof(a8)*100);
  printf("%.16lf\n",atof(a9)*100);


  printf("*******\n");


  printf("%ld\n",A0);
  printf("%ld\n",A1);
  printf("%ld\n",A2);
  printf("%ld\n",A3);
  printf("%ld\n",A4);
  printf("%ld\n",A5);
  printf("%ld\n",A6);
  printf("%ld\n",A7);
  printf("%ld\n",A8);
  printf("%ld\n",A9);

  }


0.8900000000000000
1.8899999999999999
2.8900000000000001
3.8900000000000001
4.8899999999999997
5.8899999999999997
6.8899999999999997
7.8899999999999997
8.8900000000000006
9.8900000000000006
*******
89.0000000000000000
189.0000000000000000
289.0000000000000000
389.0000000000000000
488.9999999999999432
589.0000000000000000
689.0000000000000000
789.0000000000000000
889.0000000000000000
989.0000000000000000
*******
89
189
289
389
488
589
689
789
889
989


3.89
4.89
5.89

为例说明


转换为double类型,在内存中
1 11 52


计算出0.89的60位的表示
111000111101011100001010001111010111000010100011110101110000

100位的表示

1110001111010111000010100011110101110000101000111101011100001010001111010111000010100011110101110000



3.89
11.111000111101011100001010001111010111000010100011110101110000
1.1111000111101011100001010001111010111000010100011110101110000*2^1
因为首位肯定是1,所以第一个1不写。
正数
0
指数是1
00000000001
尾数
1111000111101011100001010001111010111000010100011110
在内存中
0000000000011111000111101011100001010001111010111000010100011110


4.89
1.00111000111101011100001010001111010111000010100011110101110000*2^2
0 00000000010 0011100011110101110000101000111101011100001010001111


5.89
1.01111000111101011100001010001111010111000010100011110101110000*2^2
0 00000000010 0111100011110101110000101000111101011100001010001111



3.8900000000000001
4.8899999999999997
5.8899999999999997

可以看出在内存中使用二进制表示后,无法准确表示。

*100后,转为二进制,代表的值是:

389.0000000000000000
488.9999999999999432
589.0000000000000000

很不幸,强制类型转换是向下转换的,

488.9999999999999432就是488


双精度浮点数转换

  • 2013年08月19日 17:24
  • 4KB
  • 下载

单精度双精度浮点数转换

  • 2013年05月02日 12:36
  • 1.69MB
  • 下载

C++ 字符串转换为浮点数时的精度问题

#include /*库文件包含*/ #include /*用于字符串操作*/ #include /*用于exit函数*/ /************************************...

JS的浮点数计算精度丢失问题解决方案

近期在做项目的时候,遇到了一些JS浮点数精度的问题。这个问题,其实说大不大,说小不小。但是这次因为涉及到一些财务和结算的问题,然后突然发现这个小问题处理起来还是挺麻烦的。这里把相关的原因的问题的解决方...

关于浮点数的精度问题

  • 2013年11月03日 14:30
  • 39KB
  • 下载

IEEE754,浮点数的精度

http://zh.wikipedia.org/wiki/IEEE_754 IEEE二进制浮点数算术标准(IEEE 754)是1980年代以来最广泛使用的浮点数运算标准,为许多CPU与浮...

高精度浮点数计算器

  • 2015年06月12日 12:26
  • 703KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:精度 强制转换 浮点数
举报原因:
原因补充:

(最多只允许输入30个字)