hdu5673(默慈金数、卡特兰数)

原创 2016年06月01日 23:34:23

Robot
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 337 Accepted Submission(s): 173

Problem Description
There is a robot on the origin point of an axis.Every second, the robot can move right one unit length or do nothing.If the robot is
on the right of origin point,it can also move left one unit length.A route is a series of movement. How many different routes there are
that after n seconds the robot is still located on the origin point?
The answer may be large. Please output the answer modulo 1,000,000,007

Input
There are multiple test cases. The first line of input contains an integer T(1≤T≤100) indicating the number of test cases. For each test case:

The only line contains one integer n(1≤n≤1,000,000).

Output
For each test case, output one integer.

Sample Input

3
1
2
4

Sample Output

1
2
9

#include<cstdio>

typedef long long ll;
const ll mod=1000000007;
const int maxn=1000005;
ll catalan[maxn],inv[maxn],fact[maxn];

ll Pow(ll n,ll m){
    ll sum=1,t=n;
//    printf("%lld %lld\n",n,m);
    while(m){
        if(m&1){
            sum*=t;
            if(sum>=mod)sum%=mod;
        }
        t*=t;
        if(t>=mod)t%=mod;
        m>>=1;
    }
    return sum;
}

ll C(ll n,ll m){
    if(m>n||m<0)return 0;
    return fact[n]*inv[m]%mod*inv[n-m]%mod;
}

int main(){
//    printf("%lld %lld\n",Pow(2,3),Pow(2,0));return 0;
    catalan[0]=1;
    for(int i=1;i<maxn;++i){
        catalan[i]=(catalan[i-1]*(4*i-2)%mod)*Pow(i+1,mod-2)%mod;
    }
    fact[0]=1;
    for(int i=1;i<maxn;++i){
        fact[i]=fact[i-1]*i%mod;
    }
    inv[0]=1;
    for(int i=1;i<maxn;++i){
        inv[i]=Pow(fact[i],mod-2)%mod;
    }

    int T;
    scanf("%d",&T);
    while(T--){
        int n;
        scanf("%d",&n);
        ll ans=0;
        for(int i=0;i<=(n>>1);++i){
            ans=ans+((catalan[i]*C((ll)n,(ll)i<<1))%mod);
            ans%=mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU-5673-Robot(卡特兰数+逆元 / 默慈金数)

Robot Accepts: 38 Submissions: 146 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/6...

hdu 5673 robot【默慈金数or卡特兰数】

补充知识: 卡特兰数 Catalan(n)=C2nnn+1Catalan(n) = \frac{C_n^{2n}}{n+1} Catalan(n)=4n−2n+1∗Catalan(n−1)Catal...
  • lhfl911
  • lhfl911
  • 2016年04月26日 20:33
  • 325

hdu5673Robot(卡特兰数+乘法逆元)

题目链接:点这里!!! 题意: 有一个机器人位于坐标原点上。每秒钟机器人都可以向右移到一个单位距离,或者在原地不动。如果机器人的当前位置在原点右侧,它同样可以向左移动单位距离。一系列的移动(左移,...

HDU 5673 Robot(卡特兰数)

题目链接:点击打开链接 思路:卡特兰数可以用来求括号序列的个数, 用了组合数学的知识。 该题其实就等价于求一个括号序列的个数, 因为满足任意时刻, 向右的步数大于等于向左的步数。 但是该题还有停止不...

HDU5673->逆元求组合数&&卡特兰数

数论:逆元求组合数&&卡特兰数 题意:一个机器人,可以向左,向右或停在当前位置每个动作都话费n个时间,但不能移动到原点左面,问n个时间后仍在原点位置有多少种走法。 题解: 机器人可以在选择要行动的n步...

HDU 1134 卡特兰数 大数乘法除法

Problem Description This is a small but ancient game. You are supposed to write down the numbers ...

hdu 2067 小兔的棋盘(卡特兰数)

小兔的棋盘 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su...

【HDU】1267 - 下沙的沙子有几粒?(BigDecimal & 卡特兰数 & 递推 & 打表)

点击打开题目 下沙的沙子有几粒? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe...
  • wyg1997
  • wyg1997
  • 2016年07月28日 11:17
  • 308

HDU 3240 Counting Binary Trees(卡特兰数+分解素数+扩展欧拉求逆元)

Counting Binary Trees Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot...
  • opm777
  • opm777
  • 2013年08月13日 09:47
  • 1184

卡特兰数——单调路径证明(HDU2067)

Description 小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n...
  • sisaku
  • sisaku
  • 2016年03月01日 23:09
  • 475
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu5673(默慈金数、卡特兰数)
举报原因:
原因补充:

(最多只允许输入30个字)