关闭

sdau三 1016

100人阅读 评论(0) 收藏 举报

问题:

在一无限大的二维平面中,我们做如下假设:
1、  每次只能移动一格;
2、  不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);
3、  走过的格子立即塌陷无法再走第二次;

求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。


Input
首先给出一个正整数C,表示有C组测试数据
接下来的C行,每行包含一个整数n (n<=20),表示要走n步。


Output
请编程输出走n步的不同方案总数;
每组的输出占一行。


Sample Input
2 1 2


Sample Output
3 7
分析:

简单的找规律题,从基础画图,找出递推表达式,K.O.

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
long long dp(int n){
    long long a[21];
    memset(a,0,sizeof(a));
    a[0]=1;a[1]=3;
    for(int i=2;i<=n;i++)
        a[i]=a[i-1]*2+a[i-2];
    return a[n];
}
int main(){
    //freopen("s.txt","r",stdin);
    int c;
    cin>>c;
    while(c--){
        int n;
        cin>>n;
        long long s=dp(n);
        cout<<s<<endl;
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4363次
    • 积分:389
    • 等级:
    • 排名:千里之外
    • 原创:36篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条