机器学习之朴素贝叶斯分类

贝叶斯概率在机器学习、自然语言处理中被广泛地应用,对于海量数据的文本分类问题(比如垃圾邮件的甄选和过滤),基于贝叶思的算法取得非常好的效果。一、概率基础概率:概率是某一事件或者预测行为的可信程度。取值在0-1之间。 比如,抛一枚硬币,正面朝上的可能性和反面朝上的肯能性是相等的,都是0.5.条件概率:条件概率是指在某些前提条件的概率问题。 比如,根据美国疾病控制中心美国每年大约有78.5万人罹患心脏病...
阅读(1287) 评论(0)

机器学习之k近邻算法

k-近邻算法...
阅读(746) 评论(0)

[机器学习02]supervised learning and unsupervised learning

监督学习和无监督学习...
阅读(1003) 评论(0)

[机器学习01]What's machine learing?

machine learning definition and types...
阅读(720) 评论(0)
    QQ群

    交流群:559831158

    个人资料
    • 访问:697333次
    • 积分:7653
    • 等级:
    • 排名:第2926名
    • 原创:190篇
    • 转载:2篇
    • 译文:6篇
    • 评论:407条
    StackOverFlow
    http://stackoverflow.com/users/6526424
    统计
    博客专栏
    文章分类
    最新评论