Fibonacci数列

原创 2007年09月20日 22:29:00

中学的数学规律题目中常常见到这样的一组数:1,1,2,3,5,8,13,21,34,55,89,144,233...。这组数在数学上,常被人们称作Fibonacci数列。

1202年,意大利数学家斐波那契出版了他的《算盘全书》。他在书中提出了一个关于兔子繁殖的问题:如果一对兔子每月能生一对小兔(一雄一雌),而每对小兔在它出生后的第三个月里,又能开始生一对小兔,假定在不发生死亡的情况下,由一对出生的小兔开始,50个月后会有多少对兔子?

在第一个月时,只有一对小兔子,过了一个月,那对兔子成熟了,在第三个月时便生下一对小兔子,这时有两对兔子。再过多一个月,成熟的兔子再生一对小兔子,而另一对小兔子长大,有三对小兔子。如此推算下去,我们便发现一个规律:

时间(月)

初生兔子(对)

成熟兔子(对)

兔子总数(对)

1

1

0

1

2

0

1

1

3

1

1

2

4

1

2

3

5

2

3

5

6

3

5

8

7

5

8

13

8

8

13

21

9

13

21

34

10

21

34

55

 

 

 

 

 

 

 

由此可知,从第一个月开始以后每个月的兔子总数是:1,1,2,3,5,8,13,21,34,55,89,144,233...。若把上述数列继续写下去,得到的数列便称为斐波那契数列。数列中每个数便是前两个数之和,而数列的最初两个数都是1。

若设F0=1, F1=1, F2=2, F3=3, F4=5, F5=8, F6=13...,则:当n>1时,Fn+2 = Fn+1 + Fn,而F0=F1=1。
下面是一个古怪的式子:

Fn看似是无理数,但当n ≧0时,Fn都是整数

利用斐波那契数列来做出一个新的数列:方法是把数列中相邻的数字相除,以组成新的数列如下:

当n无限大时,数列的极限是:

这个数值称为黄金分割比,它正好是方程式x2+x-1=0的一个根。

C++程序:

//Program to generate the first 15 Fibonacci numbers
#include<stdio.h>
int main (void)
{
    int Fibonacci[15],i;
    Fibonacci[0]=1;
    Fibonacci[1]=1;
    for(i=2;i<15;++i)
       Fibonacci[i]=Fibonacci[i-2]+Fibonacci[i-1];
    for(i=0;i<15;++i)
        printf("%i/n",Fibonacci[i]);
    return 0;
}

Fibonacci数列在很多领域都有体现,不仅是兔子的繁殖上,在一般经济的发展上,在股票等资本市场的预测上也很有用。

后记:对Fibonacci数列产生兴趣是从《越狱》开始的,片中有个人物叫Fibonacci,一开始觉得很好听,一定是个意大利人的名字,后来才知道是个数学家的名字。这会儿刚刚看了《达芬奇密码》,里面也说到Fibonacci数列,这就把这篇文章收录到自己的博客中来,因为数学也是我最近研究的课题。

Fibonacci(斐波那契)数列的JAVA解法

  • 2015年12月03日 08:47
  • 39KB
  • 下载

fibonacci数列的matlab实现

  • 2013年09月25日 10:39
  • 218B
  • 下载

入门训练 Fibonacci数列 圆的面积 序列求和 A+B问题

入门训练 Fibonacci数列  问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。 当n比较大时,Fn也非常大,现在我们想知道,Fn除以1000...

求解fibonacci数列的前20项

  • 2008年11月19日 23:07
  • 211B
  • 下载

Fibonacci的【兔子数列】 以及 【狐狸找兔子】的问题 及 算法!

Fibonacci的【兔子数列】和 变形约瑟夫环的【狐狸找兔子】,台阶问题 1,有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每...

Fibonacci数列

  • 2012年04月05日 18:48
  • 287B
  • 下载

fibonacci数列

  • 2012年04月26日 23:47
  • 2KB
  • 下载

编程之美 2.9 斐波那契(Fibonacci)数列

编程之美 2.9 斐波那契(Fibonacci)数列斐波那契的递归表达式如下 F(n)=F(n-1)+F(n-2) n>=2 F(1)=1 F(0)=0 书中提到了三中解决方...

非递归实现fibonacci数列

  • 2012年10月20日 18:10
  • 542KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Fibonacci数列
举报原因:
原因补充:

(最多只允许输入30个字)